Comprehensive Analysis of Rice Laccase Gene (OsLAC) Family and Ectopic Expression of OsLAC10 Enhances Tolerance to Copper Stress in Arabidopsis

被引:125
|
作者
Liu, Qingquan [1 ,2 ]
Luo, Le [3 ]
Wang, Xiaoxiao [1 ]
Shen, Zhenguo [1 ]
Zheng, Luqing [1 ]
机构
[1] Nanjing Agr Univ, Coll Life Sci, Nanjing 210095, Jiangsu, Peoples R China
[2] Jiangsu Prov & Chinese Acad Sci, Inst Bot, Nanjing 210014, Peoples R China
[3] Nanjing Agr Univ, Coll Resources & Environm Sci, Nanjing 210095, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
rice laccase; OsLAC10; copper tolerance; copper uptake; Arabidopsis; LIGNIN BIOSYNTHESIS; DOWN-REGULATION; THALIANA; PLANTS; ROOTS; TRANSPORTER; PROTEINS; ENZYME; POPLAR; CDNAS;
D O I
10.3390/ijms18020209
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Laccases are encoded by a multigene family and widely distributed in plant genomes where they play roles oxidizing monolignols to produce higher-order lignin involved in plant development and stress responses. We identified 30 laccase genes (OsLACs) from rice, which can be divided into five subfamilies, mostly expressed during early development of the endosperm, growing roots, and stems. OsLACs can be induced by hormones, salt, drought, and heavy metals stresses. The expression level of OsLAC10 increased 1200-fold after treatment with 20 M Cu for 12 h. The laccase activities of OsLAC10 were confirmed in an Escherichia coli expression system. Lignin accumulation increased in the roots of Arabidopsis over-expressing OsLAC10 (OsLAC10-OX) compared to wild-type controls. After growth on 1/2 Murashige and Skoog (MS) medium containing toxic levels of Cu for seven days, roots of the OsLAC10-OX lines were significantly longer than those of the wild type. Compared to control plants, the Cu concentration decreased significantly in roots of the OsLAC10-OX line under hydroponic conditions. These results provided insights into the evolutionary expansion and functional divergence of OsLAC family. In addition, OsLAC10 is likely involved in lignin biosynthesis, and reduces the uptake of Cu into roots required for Arabidopsis to develop tolerance to Cu.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Ectopic Expression of Rice PYL3 Enhances Cold and Drought Tolerance in Arabidopsis thaliana
    Lenka, Sangram K.
    Muthusamy, Senthilkumar K.
    Chinnusamy, Viswanathan
    Bansal, Kailash C.
    MOLECULAR BIOTECHNOLOGY, 2018, 60 (05) : 350 - 361
  • [2] Comprehensive Expression Analysis of Rice Armadillo Gene Family During Abiotic Stress and Development
    Sharma, Manisha
    Singh, Amarjeet
    Shankar, Alka
    Pandey, Amita
    Baranwal, Vinay
    Kapoor, Sanjay
    Tyagi, Akhilesh K.
    Pandey, Girdhar K.
    DNA RESEARCH, 2014, 21 (03) : 267 - 283
  • [3] Genome-Wide Comprehensive Analysis of the SABATH Gene Family in Arabidopsis and Rice
    Wang, Bin
    Li, Min
    Yuan, Yijun
    Liu, Shaofang
    EVOLUTIONARY BIOINFORMATICS, 2019, 15
  • [4] Ectopic Expression of Cold Responsive LlaCIPK Gene Enhances Cold Stress Tolerance in Nicotiana tabacum
    Aslam, Mohammad
    Fakher, Beenish
    Anandhan, Sivalingam
    Pande, Veena
    Ahmed, Zakwan
    Qin, Yuan
    GENES, 2019, 10 (06)
  • [5] Ectopic expression of citrus UDP-GLUCOSYL TRANSFERASE gene enhances anthocyanin and proanthocyanidins contents and confers high light tolerance in Arabidopsis
    Rao, Muhammad Junaid
    Xu, Yuantao
    Huang, Yue
    Tang, Xiaomei
    Deng, Xiuxin
    Xu, Qiang
    BMC PLANT BIOLOGY, 2019, 19 (01)
  • [6] Ectopic expression of TaOEP16-2-5B, a wheat plastid outer envelope protein gene, enhances heat and drought stress tolerance in transgenic Arabidopsis plants
    Zang, Xinshan
    Geng, Xiaoli
    Liu, Kelu
    Wang, Fei
    Liu, Zhenshan
    Zhang, Liyuan
    Zhao, Yue
    Tian, Xuejun
    Hu, Zhaorong
    Yao, Yingyin
    Ni, Zhongfu
    Xin, Mingming
    Sun, Qixin
    Peng, Huiru
    PLANT SCIENCE, 2017, 258 : 1 - 11
  • [7] Forced expression of Mdmyb10, a myb transcription factor gene from apple, enhances tolerance to osmotic stress in transgenic Arabidopsis
    Gao, Jian-Jie
    Zhang, Zhen
    Peng, Ri-He
    Xiong, Ai-Sheng
    Xu, Jing
    Zhu, Bo
    Yao, Quan-Hong
    MOLECULAR BIOLOGY REPORTS, 2011, 38 (01) : 205 - 211
  • [8] Ectopic expression of a rice transcription factor, Mybleu, enhances tolerance of transgenic plants of Carrizo citrange to low oxygen stress
    Caruso, Paola
    Baldoni, Elena
    Mattana, Monica
    Paolo, Donata Pietro
    Genga, Annamaria
    Coraggio, Immacolata
    Russo, Giuseppe
    Picchi, Valentina
    Recupero, Giuseppe Reforgiato
    Locatelli, Franca
    PLANT CELL TISSUE AND ORGAN CULTURE, 2012, 109 (02) : 327 - 339
  • [9] Ectopic Expression of Maize Plastidic Methionine Sulfoxide Reductase ZmMSRB1 Enhances Salinity Stress Tolerance in Arabidopsis thaliana
    Wang, Guangling
    Fu, Xiaoyi
    Zhao, Wanmei
    Zhang, Mengmeng
    Chen, Fanguo
    PLANT MOLECULAR BIOLOGY REPORTER, 2022, 40 (02) : 284 - 295
  • [10] Ectopic expression of ABI3 gene enhances freezing tolerance in response to abscisic acid and low temperature in Arabidopsis thaliana
    Tamminen, I
    Mäkelä, P
    Heino, P
    Palva, ET
    PLANT JOURNAL, 2001, 25 (01): : 1 - 8