INTERPOLATION INEQUALITIES OF NUMERICAL RADIUS

被引:0
作者
Liu, Hongbo [1 ]
机构
[1] Henan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Henan, Peoples R China
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2022年 / 16卷 / 04期
关键词
Hilbert spaces; numerical radius; norm inequalities; NORM INEQUALITIES; SUMS;
D O I
10.7153/jmi-2022-16-106
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we give several generalization and refinement of numerical radius inequalities of bounded linear operators on a complex Hilbert space. It's shown that the bounds obtained here are stronger than the known bounds of numerical radius inequalities. Moreover, we use the properties of operator convex functions to obtain several interpolation inequalities of numerical radius.
引用
收藏
页码:1633 / 1644
页数:12
相关论文
共 15 条
[1]   Notes on matrix arithmetic-geometric mean inequalities [J].
Bhatia, R ;
Kittaneh, F .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2000, 308 (1-3) :203-211
[2]  
Bhunia P, 2020, Arxiv, DOI arXiv:2010.12750
[3]   New upper bounds for the numerical radius of Hilbert space operators [J].
Bhunia, Pintu ;
Paul, Kallol .
BULLETIN DES SCIENCES MATHEMATIQUES, 2021, 167
[4]  
BUZANO M. L, 1974, Rend. Sem. Mat. Univ. e Politech. Torino, V31, P405
[5]   Hermite-Hadamard's type inequalities for operator convex functions [J].
Dragomir, S. S. .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (03) :766-772
[6]  
Dragomir S. S., 2009, Sarajevo J. Math., V5, P269
[7]   Numerical radius inequalities for Hilbert space operators. II [J].
El-Haddad, Mohammad ;
Kittaneh, Fuad .
STUDIA MATHEMATICA, 2007, 182 (02) :133-140
[8]  
Furuta T, 2005, MOND PECARIE METHOD
[9]   SOME REFINEMENTS OF THE NUMERICAL RADIUS INEQUALITIES VIA YOUNG INEQUALITY [J].
Heydarbeygi, Z. ;
Amyari, M. .
KRAGUJEVAC JOURNAL OF MATHEMATICS, 2021, 45 (02) :191-202
[10]  
HEYDARBEYGI Z., 2020, UKRAINIAN J MATH, V10, P1443