Bagging One-Class Decision Trees

被引:6
作者
Li, Chen [1 ]
Zhang, Yang [1 ]
机构
[1] NW A&F Univ, Coll Informat Engn, Yangling 712100, Shaanxi Prov, Peoples R China
来源
FIFTH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, VOL 2, PROCEEDINGS | 2008年
关键词
D O I
10.1109/FSKD.2008.478
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
POSC4.5 is a one-class decision tree classifier with good classification accuracy which learns from both positive and unlabeled examples. In order to further improve the classification accuracy and robustness of POSC4.5, in this paper, we ensemble POSC4.5 trees by bagging, and classify testing samples by majority voting. The experiment results on 5 UCI datasets show that the classification accuracy and robustness of POSC4.5 could be improved by our approach.
引用
收藏
页码:420 / 423
页数:4
相关论文
共 10 条
[1]   A comparison of decision tree ensemble creation techniques [J].
Banfield, Robert E. ;
Hall, Lawrence O. ;
Bowyer, Kevin W. ;
Kegelmeyer, W. P. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2007, 29 (01) :173-180
[2]   Bagging predictors [J].
Breiman, L .
MACHINE LEARNING, 1996, 24 (02) :123-140
[3]   Learning from positive and unlabeled examples [J].
Denis, F ;
Gilleron, R ;
Letouzey, F .
THEORETICAL COMPUTER SCIENCE, 2005, 348 (01) :70-83
[4]   An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization [J].
Dietterich, TG .
MACHINE LEARNING, 2000, 40 (02) :139-157
[5]  
DIETTERICH TG, 2000, MULTIPLE CLASSIFER S
[6]  
GIACINTO G, 2005, NETWORK INTRUSION DE, P58
[7]  
PERDISCI R, 2005, USING ENSEMBLE ONE C
[8]  
POLOKAR R, 2006, IEEE CIRCUITS SYSTEM
[9]   Constructing boosting algorithms from SVMs:: An application to one-class classification [J].
Rätsch, G ;
Mika, S ;
Schölkopf, B ;
Müller, KR .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2002, 24 (09) :1184-1199
[10]  
Tax D. M.J., 2001, COMBINING ONE CLASS, P299