SHARP WEIGHTED BOUNDS INVOLVING A∞

被引:219
作者
Hytoenen, Tuomas [1 ]
Perez, Carlos [2 ]
机构
[1] Univ Helsinki, Dept Math & Stat, FI-00014 Helsinki, Finland
[2] Univ Seville, Fac Math, Dept Anal Matemat, E-41080 Seville, Spain
来源
ANALYSIS & PDE | 2013年 / 6卷 / 04期
基金
芬兰科学院;
关键词
weighted norm inequalities; A(p) weights; sharp estimates; maximal function; Calderon-Zygmund operators; AHLFORS-BEURLING OPERATOR; NORM INEQUALITIES; SINGULAR-INTEGRALS; SPACES; EXTRAPOLATION; MUCKENHOUPT;
D O I
10.2140/apde.2013.6.777
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We improve on several weighted inequalities of recent interest by replacing a part of the A(p) bounds by weaker A 1 estimates involving Wilson's A 1 constant [w](A infinity)' := sup(Q) 1/w(Q) integral(M)(Q) (w chi(Q)) In particular, we show the following improvement of the first author's A(2) theorem for Calderon-Zygmund ;operators T: parallel to T parallel to(B)(L-2(w)) <= c(T) [w](A2)(1/2) ([w](A infinity)' + [w(-1)](A infinity)')(1/2). Corresponding A(p) type results are obtained from a new extrapolation theorem with appropriate mixed A(p)-A 1 bounds. This uses new two-weight estimates for the maximal function, which improve on Buckley's classical bound. We also derive mixed A(1)-A(infinity) type results of Lerner, Ombrosi and Perez (2009) of the form parallel to T parallel to(B)(L-P(w)) <= cpp' [w](A1)(1/)p ([w](A infinity)')(1/p'), 1 < p < infinity, parallel to Tf parallel to(L1,infinity) <= c[w](A1) log (e + [w](A infinity)')parallel to f parallel to(L1)(w). An estimate dual to the last one is also found, as well as new bounds for commutators of singular integrals.
引用
收藏
页码:777 / 818
页数:42
相关论文
共 50 条
  • [1] [Anonymous], 2008, LECT NOTES MATH
  • [2] [Anonymous], 1983, Lecture Notes in Math.
  • [3] Beltrami operators in the plane
    Astala, K
    Iwaniec, T
    Saksman, E
    [J]. DUKE MATHEMATICAL JOURNAL, 2001, 107 (01) : 27 - 56
  • [4] Carleson measures, trees, extrapolation, and T(b) theorems
    Auscher, P
    Hofmann, S
    Muscalu, C
    Tao, T
    Thiele, C
    [J]. PUBLICACIONS MATEMATIQUES, 2002, 46 (02) : 257 - 325
  • [5] Beznosova O., 2011, REV MAT IBE IN PRESS
  • [6] ESTIMATES FOR OPERATOR NORMS ON WEIGHTED SPACES AND REVERSE JENSEN INEQUALITIES
    BUCKLEY, SM
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 340 (01) : 253 - 272
  • [7] SHARP BOUNDS FOR GENERAL COMMUTATORS ON WEIGHTED LEBESGUE SPACES
    Chung, Daewon
    Pereyra, M. Cristina
    Perez, Carlos
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (03) : 1163 - 1177
  • [8] COIFMAN RR, 1974, STUD MATH, V51, P241
  • [9] FACTORIZATION THEOREMS FOR HARDY SPACES IN SEVERAL VARIABLES
    COIFMAN, RR
    ROCHBERG, R
    WEISS, G
    [J]. ANNALS OF MATHEMATICS, 1976, 103 (03) : 611 - 635
  • [10] Sharp weighted estimates for classical operators
    Cruz-Uribe, David
    Maria Martell, Jose
    Perez, Carlos
    [J]. ADVANCES IN MATHEMATICS, 2012, 229 (01) : 408 - 441