SIMPLE MODULES AND NON-COMMUTATIVE QUADRICS

被引:0
作者
Jondrup, Soren [1 ]
机构
[1] Univ Copenhagen, Inst Matemat, DK-2100 Copenhagen, Denmark
关键词
Modules; extensions; plane curves; dimensions; ext-relation; non-commutative Jacobi matrix;
D O I
10.1142/S0219498813500485
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we classify non-commutative quadrics and study their homological properties. In fact we find all non-commutative algebras of degree 2 up to isomorphism and we study these algebras via their homomorphic images onto the polynomial algebra k[x, y] as well as the Ext(1)(k(p), k(q))-groups, where k(p) and k(q) are one-dimensional simple modules. Moreover some general results on simple finite-dimensional modules are obtained. Some of these results are applied to the special cases of non-commutative quadrics.
引用
收藏
页数:15
相关论文
共 12 条
[1]  
Awami M., 1988, B SOC MATH BELG A, V40, P175
[2]   DIAMOND LEMMA FOR RING THEORY [J].
BERGMAN, GM .
ADVANCES IN MATHEMATICS, 1978, 29 (02) :178-218
[3]  
Cohn P.M., 1977, Algebra, VVolume 2
[4]  
Goodearl K. R., 1989, An Introduction to Noncommutative Noetherian Rings
[5]   PRIME IDEALS IN SKEW POLYNOMIAL-RINGS AND QUANTIZED WEYL ALGEBRAS [J].
GOODEARL, KR .
JOURNAL OF ALGEBRA, 1992, 150 (02) :324-377
[6]   Quantized rank R matrices [J].
Jakobsen, HP ;
Jondrup, S .
JOURNAL OF ALGEBRA, 2001, 246 (01) :70-96
[7]   Representations of skew polynomial algebras [J].
Jondrup, S .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (05) :1301-1305
[8]   Representations of some PI algebras [J].
Jondrup, S .
COMMUNICATIONS IN ALGEBRA, 2003, 31 (06) :2587-2602
[9]  
Jondrup S., ARXIVMATHAG0405350
[10]   The geometry of noncommutative plane curves [J].
Jondrup, Soren .
COMMUNICATIONS IN ALGEBRA, 2008, 36 (09) :3467-3477