Qualitative analysis of gradient-type systems with oscillatory nonlinearities on the Sierpinski Gasket

被引:17
作者
Bonanno, Gabriele [1 ]
Bisci, Giovanni Molica [2 ]
Radulescu, Vicentiu [3 ,4 ]
机构
[1] Univ Messina, Dept Sci Engn & Architecture, Math Sect, Fac Engn, I-98166 Messina, Italy
[2] Univ Mediterranea Reggio Calabria, Dept Patrimonio Architetton & Urbanist PAU, I-89124 Reggio Di Calabria, Italy
[3] Romanian Acad, Inst Math Simion Stoilow, Bucharest 014700, Romania
[4] Univ Craiova, Dept Math, Craiova 200585, Romania
关键词
Sierpinski gasket; Nonlinear elliptic equation; Dirichlet form; Weak Laplacian; ELLIPTIC-EQUATIONS; DIFFERENTIAL-EQUATIONS; MULTIPLE SOLUTIONS; POSITIVE SOLUTIONS; DIRICHLET PROBLEM; LAPLACIAN; EXISTENCE; SPECTRUM;
D O I
10.1007/s11401-013-0772-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Under an appropriate oscillating behavior either at zero or at infinity of the nonlinear data, the existence of a sequence of weak solutions for parametric quasilinear systems of the gradient-type on the SierpiA"ski gasket is proved. Moreover, by adopting the same hypotheses on the potential and in presence of suitable small perturbations, the same conclusion is achieved. The approach is based on variational methods and on certain analytic and geometrical properties of the SierpiA"ski fractal as, for instance, a compact embedding result due to Fukushima and Shima.
引用
收藏
页码:381 / 398
页数:18
相关论文
共 48 条
[1]   SOME PROPERTIES OF THE SPECTRUM OF THE SIERPINSKI GASKET IN A MAGNETIC-FIELD [J].
ALEXANDER, S .
PHYSICAL REVIEW B, 1984, 29 (10) :5504-5508
[2]  
[Anonymous], 1996, Resenhas
[3]   Localized eigenfunctions of the Laplacian on pcf self-similar sets [J].
Barlow, MT ;
Kigami, J .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1997, 56 :320-332
[4]  
Bartsch T, 1999, PROG NONLIN, V35, P51
[5]  
Bensedik Ahmed, 2002, ELECT J DIFFERENTIAL, V2002, P1
[6]   Some remarks on a system of quasilinear elliptic equations [J].
Boccardo, L ;
de Figueiredo, DG .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2002, 9 (03) :309-323
[7]   Partial differential equations on products of Sierpinski gaskets [J].
Bockelman, Brian ;
Strichartz, Robert S. .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2007, 56 (03) :1361-1375
[8]   VARIATIONAL ANALYSIS FOR A NONLINEAR ELLIPTIC PROBLEM ON THE SIERPINSKI GASKET [J].
Bonanno, Gabriele ;
Bisci, Giovanni Molica ;
Radulescu, Vicentiu .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2012, 18 (04) :941-953
[9]   Infinitely many solutions for a class of nonlinear elliptic problems on fractals [J].
Bonanno, Gabriele ;
Bisci, Giovanni Molica ;
Radulescu, Vicentiu .
COMPTES RENDUS MATHEMATIQUE, 2012, 350 (3-4) :187-191
[10]   Infinitely many solutions for a class of nonlinear eigenvalue problem in Orlicz-Sobolev spaces [J].
Bonanno, Gabriele ;
Bisci, Giovanni Molica ;
Radulescu, Vicentiu .
COMPTES RENDUS MATHEMATIQUE, 2011, 349 (5-6) :263-268