Phylogenetic composition, spatial structure, and dynamics of lotic bacterial biofilms investigated by fluorescent in situ hybridization and confocal laser scanning microscopy

被引:148
作者
Manz, W [1 ]
Wendt-Potthoff, K
Neu, TR
Szewzyk, U
Lawrence, JR
机构
[1] Tech Univ Berlin, Dept Microbial Ecol, D-10587 Berlin, Germany
[2] UFZ Helmholtz Ctr Environm Res, Ctr Environm Res Leipzig Halle, Dept Inland Water Res Magdeburg, D-39114 Magdeburg, Germany
[3] Natl Water Res Inst Branch, Saskatoon, SK S7N 3H5, Canada
关键词
D O I
10.1007/s002489900148
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
The phylogenetic composition, three-dimensional structure and dynamics of bacterial communities in river biofilms generated in a rotating annular reactor system were studied by fluorescent in situ hybridization (FISH) and confocal laser scanning microscopy (CLSM). Biofilms grew on independently removable polycarbonate slides exposed in the reactor system with natural river water as inoculum and sole nutrient and carbon source. The microbial biofilm community developed from attached single cells and distinct microcolonies via a more confluent structure characterized by various filamentous bacteria to a mature biofilm rich in polymeric material with fewer cells on a per-area basis after 56 days. During the different stages of biofilm development, characteristic microcolonies and cell morphotypes could be identified as typical features of the investigated lotic biofilms. In situ analysis using a comprehensive suite of rRNA-targeted probes visualized individual cells within the alpha-, beta-, and gamma-Proteobacteria as well as the Cytophaga-Flavobacterium group as major parts of the attached community. The relative abundance of these major groups was determined by using digital image analysis to measure specific cell numbers as well as specific cell area after in situ probing. Within the lotic biofilm community, 87% of the whole bacterial cell area and 79% of the total cell counts hybridized with a Bacteria specific probe. During initial biofilm development, beta-Proteobacteria dominated the bacterial population. This was followed by a rapid increase of alpha-Proteobacteria and bacteria affiliated to the Cytophaga-Flavobacterium group. In mature biofilms, alpha-Proteobacteria and Cytophaga-Flavobacteria continued to be the prevalent bacterial groups. Beta-Proteobacteria constituted the morphologically most diverse group within the biofilm communities, and more narrow phylogenetic staining revealed the importance of distinct phylotypes within the beta1-Proteobacteria for the composition of the microbial community. The presence of sulfate-reducing bacteria affiliated to the Desulfovibrionaceae and Desulfobacteriaceae confirmed the range of metabolic potential within the lotic biofilms.
引用
收藏
页码:225 / 237
页数:13
相关论文
共 58 条
[1]   Community analysis of the bacterial assemblages in the winter cover and pelagic layers of a high mountain lake by in situ hybridization [J].
Alfreider, A ;
Pernthaler, J ;
Amann, R ;
Sattler, B ;
Glockner, FO ;
Wille, A ;
Psenner, R .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1996, 62 (06) :2138-2144
[2]   FLUORESCENT-OLIGONUCLEOTIDE PROBING OF WHOLE CELLS FOR DETERMINATIVE, PHYLOGENETIC, AND ENVIRONMENTAL-STUDIES IN MICROBIOLOGY [J].
AMANN, RI ;
KRUMHOLZ, L ;
STAHL, DA .
JOURNAL OF BACTERIOLOGY, 1990, 172 (02) :762-770
[3]   MOLECULAR AND MICROSCOPIC IDENTIFICATION OF SULFATE-REDUCING BACTERIA IN MULTISPECIES BIOFILMS [J].
AMANN, RI ;
STROMLEY, J ;
DEVEREUX, R ;
KEY, R ;
STAHL, DA .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1992, 58 (02) :614-623
[4]   PHYLOGENETIC IDENTIFICATION AND IN-SITU DETECTION OF INDIVIDUAL MICROBIAL-CELLS WITHOUT CULTIVATION [J].
AMANN, RI ;
LUDWIG, W ;
SCHLEIFER, KH .
MICROBIOLOGICAL REVIEWS, 1995, 59 (01) :143-169
[5]   COMBINATION OF 16S RIBOSOMAL-RNA-TARGETED OLIGONUCLEOTIDE PROBES WITH FLOW-CYTOMETRY FOR ANALYZING MIXED MICROBIAL-POPULATIONS [J].
AMANN, RI ;
BINDER, BJ ;
OLSON, RJ ;
CHISHOLM, SW ;
DEVEREUX, R ;
STAHL, DA .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1990, 56 (06) :1919-1925
[6]   FULLY-AUTOMATIC DETERMINATION OF SOIL BACTERIUM NUMBERS, CELL VOLUMES, AND FREQUENCIES OF DIVIDING CELLS BY CONFOCAL LASER-SCANNING MICROSCOPY AND IMAGE-ANALYSIS [J].
BLOEM, J ;
VENINGA, M ;
SHEPHERD, J .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1995, 61 (03) :926-936
[7]   IDENTIFYING MEMBERS OF THE DOMAIN ARCHAEA WITH RIBOSOMAL-RNA-TARGETED OLIGONUCLEOTIDE PROBES [J].
BURGGRAF, S ;
MAYER, T ;
AMANN, R ;
SCHADHAUSER, S ;
WOESE, CR ;
STETTER, KO .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1994, 60 (09) :3112-3119
[8]  
Characklis W.G., 1990, Biofilms, P55
[9]   HIGH ABUNDANCE OF ARCHAEA IN ANTARCTIC MARINE PICOPLANKTON [J].
DELONG, EF ;
WU, KY ;
PREZELIN, BB ;
JOVINE, RVM .
NATURE, 1994, 371 (6499) :695-697
[10]   GENUS-SPECIFIC AND GROUP-SPECIFIC HYBRIDIZATION PROBES FOR DETERMINATIVE AND ENVIRONMENTAL-STUDIES OF SULFATE-REDUCING BACTERIA [J].
DEVEREUX, R ;
KANE, MD ;
WINFREY, J ;
STAHL, DA .
SYSTEMATIC AND APPLIED MICROBIOLOGY, 1992, 15 (04) :601-609