Global Bifurcation from Intervals for Problems with Pucci's Operator

被引:0
|
作者
Luo, Hua [1 ]
Dai, Guowei [2 ]
机构
[1] Shanghai Int Studies Univ, Sch Econ & Finance, Shanghai 201620, Peoples R China
[2] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
来源
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN | 2020年 / 39卷 / 01期
关键词
Pucci's operator; interval bifurcation; one-sign solution; PRINCIPAL EIGENVALUES; ELLIPTIC-EQUATIONS; CRITICAL EXPONENTS; EXISTENCE;
D O I
10.4171/ZAA/1651
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study global bifurcation from intervals for the following fully nonlinear elliptic problem with Pucci's operator {-M-lambda,Delta(+) (D(2)u) = mu u+ h(u, mu) + g(u, mu) on Omega u = 0 on partial derivative Omega, where h is not necessarily differentiable at the origin or infinity with respect to u. Furthermore, under some suitable assumptions on nonlinearity, we investigate the global structure of bifurcating branches, which can be used to obtain the existence of one-sign solution.
引用
收藏
页码:67 / 81
页数:15
相关论文
共 50 条