Enhancement of extraordinary optical transmission and sensing performance through coupling between metal nanohole and nanoparticle arrays

被引:24
作者
Du, Bobo [1 ,2 ,3 ,4 ]
Yang, Yuan [1 ,2 ]
Zhang, Yang [1 ,2 ]
Jia, Peipei [3 ,4 ,5 ]
Ebendorff-Heidepriem, Heike [3 ,4 ,5 ]
Ruan, Yinlan [3 ,4 ,5 ]
Yang, Dexing [1 ,2 ]
机构
[1] Northwestern Polytech Univ, Sch Sci, MOE Key Lab Mat Phys & Chem Extraordinary Condit, Xian 710072, Shaanxi, Peoples R China
[2] Northwestern Polytech Univ, Sch Sci, Shaanxi Key Lab Opt Informat Technol, Xian 710072, Shaanxi, Peoples R China
[3] Univ Adelaide, IPAS, Adelaide, SA 5005, Australia
[4] Univ Adelaide, Sch Phys Sci, Adelaide, SA 5005, Australia
[5] Univ Adelaide, ARC Ctr Excellence Nanoscale BioPhoton CNBP, Adelaide, SA 5005, Australia
关键词
extraordinary optical transmission; sensing performance; nanohole; nanoparticle; LIGHT TRANSMISSION; SURFACE-PLASMONS; SUBWAVELENGTH HOLES; METAMATERIALS; DIFFRACTION; RESONANCES;
D O I
10.1088/1361-6463/ab1835
中图分类号
O59 [应用物理学];
学科分类号
摘要
The extraordinary optical transmission (EOT) of sub-wavelength nanohole array is significantly enhanced through introducing nanoparticles, including nanospheres and nanocylinders, into the centers of the nanoholes. Maxima of 56% and 48% for nanocylinder and nanosphere matrices are achieved, compared with that of 37% for a none-in-hole nanohole array gold film. The mechanism behind the phenomena is discussed, indicating that surface plasmon mode coupling between nanoholes and nanoparticles rather than Fabry-Perot resonance is the cause for the EOT enhancement. High near-field intensity enhancement also leads to the interaction between analytes and optical field increasing, therefore an improved sensitivity and figure of merit for biosensing. The modified structures are highly promising in practical sensing applications due to the incident angle independence. Similar results are obtained for a hexagonal array of nanohole gold film and nanoparticle modifications thereof.
引用
收藏
页数:10
相关论文
共 56 条
  • [1] Surface plasmon subwavelength optics
    Barnes, WL
    Dereux, A
    Ebbesen, TW
    [J]. NATURE, 2003, 424 (6950) : 824 - 830
  • [2] Theory of diffraction by small holes
    Bethe, HA
    [J]. PHYSICAL REVIEW, 1944, 66 (7/8): : 163 - 182
  • [3] Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films
    Brolo, AG
    Gordon, R
    Leathem, B
    Kavanagh, KL
    [J]. LANGMUIR, 2004, 20 (12) : 4813 - 4815
  • [4] Comparison of technologies for nano device prototyping with a special focus on ion beams: A review
    Bruchhaus, L.
    Mazarov, P.
    Bischoff, L.
    Gierak, J.
    Wieck, A. D.
    Hoevel, H.
    [J]. APPLIED PHYSICS REVIEWS, 2017, 4 (01):
  • [5] Optical transmission through hexagonal arrays of subwavelength holes in thin metal films
    Ctistis, G.
    Patoka, P.
    Wang, X.
    Kempa, K.
    Giersig, M.
    [J]. NANO LETTERS, 2007, 7 (09) : 2926 - 2930
  • [6] Enhancing extraordinary transmission of light through a metallic nanoslit with a nanocavity antenna
    Cui, Yanxia
    He, Sailing
    [J]. OPTICS LETTERS, 2009, 34 (01) : 16 - 18
  • [7] Plasmon Dispersion in Coaxial Waveguides from Single-Cavity Optical Transmission Measurements
    de Waele, Rene
    Burgos, Stanley P.
    Polman, Albert
    Atwater, Harry A.
    [J]. NANO LETTERS, 2009, 9 (08) : 2832 - 2837
  • [8] Extraordinary Effects in Quasi-Periodic Gold Nanocavities: Enhanced Transmission and Polarization Control of Cavity Modes
    Dhama, Rakesh
    Caligiuri, Vincenzo
    Petti, Lucia
    Rashed, Alireza R.
    Rippa, Massimo
    Lento, Raffaella
    Termine, Roberto
    Caglayan, Humeyra
    De Luca, Antonio
    [J]. ACS NANO, 2018, 12 (01) : 504 - 512
  • [9] SPR Label-Free Biosensor with Oxide-Metal-Oxide-Coated D-Typed Optical Fiber: a Theoretical Study
    Du, Bobo
    Yang, Yuan
    Zhang, Yang
    Yang, Dexing
    [J]. PLASMONICS, 2019, 14 (02) : 457 - 463
  • [10] Scalable Manufacturing of Nanogaps
    Dubois, Valentin
    Bleiker, Simon J.
    Stemme, Goeran
    Niklaus, Frank
    [J]. ADVANCED MATERIALS, 2018, 30 (46)