NUMERICAL APPROXIMATION OF STOCHASTIC TIME-FRACTIONAL DIFFUSION

被引:40
作者
Jin, Bangti [1 ]
Yan, Yubin [2 ]
Zhou, Zhi [3 ]
机构
[1] UCL, Dept Comp Sci, Gower St, London WC1E 6BT, England
[2] Univ Chester, Dept Math, Chester CH1 4BJ, Cheshire, England
[3] Hong Kong Polytech Univ, Dept Appl Math, Kowloon, Hong Kong, Peoples R China
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2019年 / 53卷 / 04期
关键词
stochastic time-fractional diffusion; Galerkin finite element method; Grunwald-Letnikov method; strong convergence; weak convergence; PARTIAL-DIFFERENTIAL-EQUATIONS; FULLY DISCRETE APPROXIMATION; FINITE-ELEMENT METHODS; CONVOLUTION QUADRATURE; EVOLUTION EQUATION; NONSMOOTH DATA; ORDER; DISCRETIZATION; CONVERGENCE; SPACES;
D O I
10.1051/m2an/2019025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop and analyze a numerical method for stochastic time-fractional diffusion driven by additive fractionally integrated Gaussian noise. The model involves two nonlocal terms in time, i.e., a Caputo fractional derivative of order alpha is an element of (0,1), and fractionally integrated Gaussian noise (with a Riemann-Liouville fractional integral of order gamma is an element of [0, 1] in the front). The numerical scheme approximates the model in space by the standard Galerkin method with continuous piecewise linear finite elements and in time by the classical Grunwald-Letnikov method (for both Caputo fractional derivative and Riemann-Liouville fractional integral), and the noise by the L-2-projection. Sharp strong and weak convergence rates are established, using suitable nonsmooth data error estimates for the discrete solution operators for the deterministic inhomogeneous problem. One- and two-dimensional numerical results are presented to support the theoretical findings.
引用
收藏
页码:1245 / 1268
页数:24
相关论文
共 39 条
[1]  
Allen E.J., 1998, Stoch. Stoch. Rep., V64, P117, DOI [DOI 10.1080/17442509808834159, 10.1080/17442509808834159]
[2]   Duality in refined sobolev–malliavin spaces and weak approximation of spde [J].
Andersson A. ;
Kruse R. ;
Larsson S. .
Stochastics and Partial Differential Equations Analysis and Computations, 2016, 4 (1) :113-149
[3]   WEAK CONVERGENCE FOR A SPATIAL APPROXIMATION OF THE NONLINEAR STOCHASTIC HEAT EQUATION [J].
Andersson, Adam ;
Larsson, Stig .
MATHEMATICS OF COMPUTATION, 2016, 85 (299) :1335-1358
[4]   Weak error analysis for semilinear stochastic Volterra equations with additive noise [J].
Andersson, Adam ;
Kovacs, Mihaly ;
Larsson, Stig .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 437 (02) :1283-1304
[5]   SPACE-TIME FRACTIONAL STOCHASTIC EQUATIONS ON REGULAR BOUNDED OPEN DOMAINS [J].
Anh, Vo V. ;
Leonenko, Nikolai N. ;
Ruiz-Medina, Maria D. .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2016, 19 (05) :1161-1199
[6]  
Arendt W, 2011, MG MATH, V96, pIX, DOI 10.1007/978-3-0348-0087-7
[7]   A KERNEL COMPRESSION SCHEME FOR FRACTIONAL DIFFERENTIAL EQUATIONS [J].
Baffet, Daniel ;
Hesthaven, Jan S. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (02) :496-520
[8]   An analysis of the Rayleigh-Stokes problem for a generalized second-grade fluid [J].
Bazhlekova, Emilia ;
Jin, Bangti ;
Lazarov, Raytcho ;
Zhou, Zhi .
NUMERISCHE MATHEMATIK, 2015, 131 (01) :1-31
[9]   WEAK ERROR ESTIMATES FOR TRAJECTORIES OF SPDEs UNDER SPECTRAL GALERKIN DISCRETIZATION [J].
Brehier, Charles-Edouard ;
Hairer, Martin ;
Stuart, Andrew M. .
JOURNAL OF COMPUTATIONAL MATHEMATICS, 2018, 36 (02) :159-182
[10]  
Chen L., 2015, ARXIV150907763