On the radical scavenging activity of isoflavones: thermodynamics of O-H bond cleavage

被引:87
作者
Lengyel, Jozef [1 ,2 ]
Rimarcik, Jan [3 ]
Vaganek, Adam [3 ]
Klein, Erik [3 ]
机构
[1] Acad Sci Czech Republic, J Heyrovsky Inst Phys Chem, Vvi, CR-18223 Prague 8, Czech Republic
[2] Inst Chem Technol, Dept Phys Chem, CZ-16628 Prague 6, Czech Republic
[3] Slovak Univ Technol Bratislava, Inst Phys Chem & Chem Phys, SK-81237 Bratislava, Slovakia
关键词
LOSS ELECTRON-TRANSFER; DISSOCIATION ENTHALPIES; ANTIOXIDANT PROPERTIES; GAS-PHASE; SUBSTITUTED PHENOLS; FLAVONOIDS; DFT/B3LYP; POLYPHENOLS; IONIZATION; MECHANISMS;
D O I
10.1039/c3cp00095h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We have performed Density Functional Theory B3LYP/6-311++G** calculations of reaction enthalpies of antioxidant action mechanisms for nine isoflavones. O-H bond dissociation enthalpies, ionization potentials, proton dissociation enthalpies, proton affinities and electron transfer enthalpies related to Hydrogen Atom Transfer (HAT), Single Electron Transfer-Proton Transfer (SET-PT) and Sequential Proton-Loss Electron-Transfer (SPLET) mechanisms were investigated in gas-and solution-phases. Studies on the radical scavenging ability of isoflavones, contrary to various flavonoids, are still scarce. Thus, understanding of its thermodynamics can be considered beneficial. The selection of isoflavones (daidzein, formononetin, genistein, biochanin A, prunetin, 6-hydroxydaidzein, glycitein, orobol and santal) enables us to evaluate the effects of various structural features, such as the presence of methoxy (4'-OMe, 6-OMe, 7-OMe) and hydroxy (3'-OH, 5-OH, 6-OH) groups, on studied reaction enthalpies. The obtained results show that HAT can be attributed predominantly to the B ring, while SPLET takes place preferentially in the A ring, as was also indicated in experimental works.
引用
收藏
页码:10895 / 10903
页数:9
相关论文
共 55 条
[1]   UV/Visible spectra of natural polyphenols: A time-dependent density functional theory study [J].
Anouar, El Hassane ;
Gierschner, Johannes ;
Duroux, Jean-Luc ;
Trouillas, Patrick .
FOOD CHEMISTRY, 2012, 131 (01) :79-89
[2]   THERMODYNAMICS OF THE ELECTRON AND THE PROTON [J].
BARTMESS, JE .
JOURNAL OF PHYSICAL CHEMISTRY, 1994, 98 (25) :6420-6424
[3]   DENSITY-FUNCTIONAL THERMOCHEMISTRY .3. THE ROLE OF EXACT EXCHANGE [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (07) :5648-5652
[4]   SELF-CONSISTENT MOLECULAR-ORBITAL METHODS .21. SMALL SPLIT-VALENCE BASIS-SETS FOR 1ST-ROW ELEMENTS [J].
BINKLEY, JS ;
POPLE, JA ;
HEHRE, WJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1980, 102 (03) :939-947
[5]   Substituent effects on the O-H bond dissociation enthalpies in phenolic compounds: agreements and controversies [J].
Bizarro, MM ;
Cabral, BJC ;
dos Santos, RMB ;
Simoes, JAM .
PURE AND APPLIED CHEMISTRY, 1999, 71 (07) :1249-1256
[6]  
BORS W, 1990, METHOD ENZYMOL, V186, P343
[7]   Antioxidant and antiradical activities of flavonoids [J].
Burda, S ;
Oleszek, W .
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2001, 49 (06) :2774-2779
[8]   New applications of integral equations methods for solvation continuum models: ionic solutions and liquid crystals [J].
Cances, E ;
Mennucci, B .
JOURNAL OF MATHEMATICAL CHEMISTRY, 1998, 23 (3-4) :309-326
[9]   A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics [J].
Cances, E ;
Mennucci, B ;
Tomasi, J .
JOURNAL OF CHEMICAL PHYSICS, 1997, 107 (08) :3032-3041
[10]   Antioxidant and prooxidant behavior of flavonoids: Structure-activity relationships [J].
Cao, GH ;
Sofic, E ;
Prior, RL .
FREE RADICAL BIOLOGY AND MEDICINE, 1997, 22 (05) :749-760