AN APPLICATION OF GAUSSIAN PROCESS MODELING FOR HIGH-ORDER ACCURATE ADAPTIVE MESH REFINEMENT PROLONGATION

被引:1
作者
Reeves, Steven, I [1 ,2 ]
Lee, Dongwook [2 ]
Reyes, Adam [3 ]
Graziani, Carlo [4 ]
Tzeferacos, Petros [3 ,5 ]
机构
[1] Adv Micro Devices Inc, Machine Learning Software Engn, Santa Clara, CA 95054 USA
[2] Univ Calif Santa Cruz, Dept Appl Math, Santa Cruz, CA 95064 USA
[3] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA
[4] Argonne Natl Lab, Math & Comp Sci, Lemont, IL USA
[5] Univ Rochester, Lab Laser Energet, Rochester, NY USA
基金
美国国家科学基金会;
关键词
adaptive mesh refinement; prolongations; high-order methods; Gaussian processes; computational fluid dynamics; FINITE-VOLUME METHOD; HYDRODYNAMICS; CODE; ALGORITHMS; SCHEMES; MHD; SIMULATIONS; DIFFERENCE; EQUATIONS; FLASH;
D O I
10.2140/camcos.2022.17.1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a new polynomial-free prolongation scheme for adaptive mesh refinement (AMR) simulations of compressible and incompressible computational fluid dynamics. The new method is constructed using a multidimensional kernel-based Gaussian process (GP) prolongation model. The formulation for this scheme was inspired by the two previous studies on the GP methods introduced by A. Reyes et al. (Journal of Scientific Computing, 76 (2017), and Journal of Computational Physics, 381 (2019)). We extend the previous GP interpolations and reconstructions to a new GP-based AMR prolongation method that delivers a third-order accurate prolongation of data from coarse to fine grids on AMR grid hierarchies. In compressible flow simulations, special care is necessary to handle shocks and discontinuities in a stable manner. For this, we utilize the shock handling strategy using the GP-based smoothness indicators developed in the previous GP work by Reyes et al. We compare our GP-AMR results with the test results using the second-order linear AMR method to demonstrate the efficacy of the GP-AMR method in a series of test suite problems using the AMReX library, in which the GP-AMR method has been implemented.
引用
收藏
页码:1 / 41
页数:41
相关论文
共 64 条
[1]  
Adams M., 2015, CHOMBO SOFTWARE PACK
[2]   CASTRO: A NEW COMPRESSIBLE ASTROPHYSICAL SOLVER. I. HYDRODYNAMICS AND SELF-GRAVITY [J].
Almgren, A. S. ;
Beckner, V. E. ;
Bell, B. ;
Day, M. S. ;
Howell, L. H. ;
Joggerst, C. C. ;
Lijewski, M. J. ;
Nonaka, A. ;
Singer, M. ;
Zingale, M. .
ASTROPHYSICAL JOURNAL, 2010, 715 (02) :1221-1238
[3]   A conservative adaptive projection method for the variable density incompressible Navier-Stokes equations [J].
Almgren, AS ;
Bell, JB ;
Colella, P ;
Howell, LH ;
Welcome, ML .
JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 142 (01) :1-46
[4]  
ASCAC, 2014, TOP 10 EX RES CHALL
[5]   Trends in supercomputing: The European path to exascale [J].
Attig, N. ;
Gibbon, P. ;
Lippert, Th .
COMPUTER PHYSICS COMMUNICATIONS, 2011, 182 (09) :2041-2046
[6]   Higher-order accurate space-time schemes for computational astrophysics—Part I: finite volume methods [J].
Dinshaw S. Balsara .
Living Reviews in Computational Astrophysics, 2017, 3 (1)
[7]   3-DIMENSIONAL ADAPTIVE MESH REFINEMENT FOR HYPERBOLIC CONSERVATION-LAWS [J].
BELL, J ;
BERGER, M ;
SALTZMAN, J ;
WELCOME, M .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1994, 15 (01) :127-138
[8]   LOCAL ADAPTIVE MESH REFINEMENT FOR SHOCK HYDRODYNAMICS [J].
BERGER, MJ ;
COLELLA, P .
JOURNAL OF COMPUTATIONAL PHYSICS, 1989, 82 (01) :64-84
[9]   ADAPTIVE MESH REFINEMENT FOR HYPERBOLIC PARTIAL-DIFFERENTIAL EQUATIONS [J].
BERGER, MJ ;
OLIGER, J .
JOURNAL OF COMPUTATIONAL PHYSICS, 1984, 53 (03) :484-512
[10]  
Bishop C.M., 2006, PATTERN RECOGNITION, DOI [DOI 10.18637/JSS.V017.B05, 10.1117/1.2819119]