Terahertz transmission and sheet conductivity of randomly stacked multi-layer graphene

被引:39
作者
Baek, I. H. [1 ,2 ]
Ahn, K. J. [3 ]
Kang, B. J. [1 ,2 ]
Bae, S. [4 ]
Hong, B. H. [5 ]
Yeom, D. -I. [1 ,2 ]
Lee, K. [6 ]
Jeong, Y. U. [6 ]
Rotermund, F. [1 ,2 ]
机构
[1] Ajou Univ, Dept Phys, Suwon 443749, South Korea
[2] Ajou Univ, Div Energy Syst Res, Suwon 443749, South Korea
[3] Seoul Natl Univ, Global Frontier Ctr Multiscale Energy Syst, Seoul 151747, South Korea
[4] Korea Inst Sci & Technol, Soft Innovat Mat Res Ctr, Jeonbuk 565905, South Korea
[5] Seoul Natl Univ, Dept Chem, Seoul 151747, South Korea
[6] Korea Atom Energy Res Inst, Ctr Quantum Beam Based Radiat Res, Taejon 305353, South Korea
基金
新加坡国家研究基金会;
关键词
DEVICES; SPECTROSCOPY; TRANSISTORS; MODULATORS;
D O I
10.1063/1.4805074
中图分类号
O59 [应用物理学];
学科分类号
摘要
We investigate transmission characteristics and sheet conductivity of mono- to multi-layer graphene deposited on quartz in the terahertz (THz) frequency region. The free carrier absorption and Fabry-Perot interference between graphene layers give rise to nonlinear decrease of THz transmission from 76.7% to 27% for mono- to 12-layer graphene. These phenomena are well explained with a modified theoretical model based on Drude conductivity. The optical sheet conductivity of multi-layer graphene, made by layer-by-layer random stacking of high-quality mono- layer graphene, at 1 THz exhibits two orders of magnitude higher values than the universal optical conductivity due to intraband transition of intrinsic graphene. (C) 2013 AIP Publishing LLC.
引用
收藏
页数:5
相关论文
共 31 条
[1]   Carbon-based electronics [J].
Avouris, Phaedon ;
Chen, Zhihong ;
Perebeinos, Vasili .
NATURE NANOTECHNOLOGY, 2007, 2 (10) :605-615
[2]   Graphene: Electronic and Photonic Properties and Devices [J].
Avouris, Phaedon .
NANO LETTERS, 2010, 10 (11) :4285-4294
[3]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/nnano.2010.132, 10.1038/NNANO.2010.132]
[4]  
Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/nphoton.2010.186, 10.1038/NPHOTON.2010.186]
[5]   Active terahertz metamaterial devices [J].
Chen, Hou-Tong ;
Padilla, Willie J. ;
Zide, Joshua M. O. ;
Gossard, Arthur C. ;
Taylor, Antoinette J. ;
Averitt, Richard D. .
NATURE, 2006, 444 (7119) :597-600
[6]   Broadband electromagnetic response and ultrafast dynamics of few-layer epitaxial graphene [J].
Choi, H. ;
Borondics, F. ;
Siegel, D. A. ;
Zhou, S. Y. ;
Martin, M. C. ;
Lanzara, A. ;
Kaindl, R. A. .
APPLIED PHYSICS LETTERS, 2009, 94 (17)
[7]  
Craciun MF, 2009, NAT NANOTECHNOL, V4, P383, DOI [10.1038/NNANO.2009.89, 10.1038/nnano.2009.89]
[8]   Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible [J].
Dawlaty, Jahan M. ;
Shivaraman, Shriram ;
Strait, Jared ;
George, Paul ;
Chandrashekhar, Mvs ;
Rana, Farhan ;
Spencer, Michael G. ;
Veksler, Dmitry ;
Chen, Yunqing .
APPLIED PHYSICS LETTERS, 2008, 93 (13)
[9]   Wafer-scale epitaxial graphene growth on the Si-face of hexagonal SiC (0001) for high frequency transistors [J].
Dimitrakopoulos, Christos ;
Lin, Yu-Ming ;
Grill, Alfred ;
Farmer, Damon B. ;
Freitag, Marcus ;
Sun, Yanning ;
Han, Shu-Jen ;
Chen, Zhihong ;
Jenkins, Keith A. ;
Zhu, Yu ;
Liu, Zihong ;
McArdle, Timothy J. ;
Ott, John A. ;
Wisnieff, Robert ;
Avouris, Phaedon .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2010, 28 (05) :985-992
[10]   Optical properties of graphene [J].
Falkovsky, L. A. .
INTERNATIONAL CONFERENCE ON THEORETICAL PHYSICS 'DUBNA-NANO2008', 2008, 129