Large-scale adaptive mantle convection simulation

被引:43
作者
Burstedde, Carsten [1 ,2 ]
Stadler, Georg [1 ]
Alisic, Laura [3 ,4 ]
Wilcox, Lucas C. [1 ,5 ]
Tan, Eh [6 ,7 ]
Gurnis, Michael [3 ]
Ghattas, Omar [1 ,8 ,9 ]
机构
[1] Univ Texas Austin, ICES, Austin, TX 78712 USA
[2] Univ Bonn, Inst Numer Simulat, Bonn, Germany
[3] CALTECH, Seismol Lab, Pasadena, CA 91125 USA
[4] Univ Cambridge, Bullard Labs, Cambridge, England
[5] USN, Postgrad Sch, Dept Appl Math, Monterey, CA USA
[6] CIG, Pasadena, CA USA
[7] Acad Sinica, Inst Earth Sci, Taipei, Taiwan
[8] Univ Texas Austin, Jackson Sch Geosci, Austin, TX 78712 USA
[9] Univ Texas Austin, Dept Mech Engn, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
Numerical solutions; Mantle processes; Dynamics: convection currents; and mantle plumes; ERROR ESTIMATION; MESH REFINEMENT; FLOW; ALGORITHMS; VISCOSITY; DYNAMICS; MODELS;
D O I
10.1093/gji/ggs070
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
A new generation, parallel adaptive-mesh mantle convection code, Rhea, is described and benchmarked. Rhea targets large-scale mantle convection simulations on parallel computers, and thus has been developed with a strong focus on computational efficiency and parallel scalability of both mesh handling and numerical solvers. Rhea builds mantle convection solvers on a collection of parallel octree-based adaptive finite element libraries that support new distributed data structures and parallel algorithms for dynamic coarsening, refinement, rebalancing and repartitioning of the mesh. In this study we demonstrate scalability to 122 880 compute cores and verify correctness of the implementation. We present the numerical approximation and convergence properties using 3-D benchmark problems and other tests for variable-viscosity Stokes flow and thermal convection.
引用
收藏
页码:889 / 906
页数:18
相关论文
共 49 条
[1]  
Ainsworth M., 2000, PUR AP M-WI
[2]   Slab stress and strain rate as constraints on global mantle flow [J].
Alisic, Laura ;
Gurnis, Michael ;
Stadler, Georg ;
Burstedde, Carsten ;
Wilcox, Lucas C. ;
Ghattas, Omar .
GEOPHYSICAL RESEARCH LETTERS, 2010, 37
[3]  
[Anonymous], 2006, Technical report SAND2006-2649
[4]  
Becker R, 2001, ACT NUMERIC, V10, P1, DOI 10.1017/S0962492901000010
[5]   3-DIMENSIONAL THERMAL-CONVECTION IN A SPHERICAL-SHELL [J].
BERCOVICI, D ;
SCHUBERT, G ;
GLATZMAIER, GA ;
ZEBIB, A .
JOURNAL OF FLUID MECHANICS, 1989, 206 :75-104
[6]   Adaptive mesh refinement using wave-propagation algorithms for hyperbolic systems [J].
Berger, MJ ;
Leveque, RJ .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (06) :2298-2316
[7]   Stabilization of low-order mixed finite elements for the Stokes equations [J].
Bochev, PB ;
Dohrmann, CR ;
Gunzburger, MD .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (01) :82-101
[8]  
Briggs W.L., 2000, A Multigrid Tutorial, V2nd
[9]   STREAMLINE UPWIND PETROV-GALERKIN FORMULATIONS FOR CONVECTION DOMINATED FLOWS WITH PARTICULAR EMPHASIS ON THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS [J].
BROOKS, AN ;
HUGHES, TJR .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1982, 32 (1-3) :199-259
[10]  
Burstedde C., 2010, SC10