Scalarization for characterization of approximate strong/weak/proper efficiency in multi-objective optimization

被引:31
作者
Ghaznavi-Ghosoni, B. A. [1 ]
Khorram, E. [1 ]
Soleimani-damaneh, M. [2 ]
机构
[1] Amirkabir Univ Technol, Fac Math & Comp Sci, Tehran 15914, Iran
[2] Univ Tehran, Coll Sci, Sch Math Stat & Comp Sci, Tehran, Iran
关键词
multi-objective programming; E-(strong; weak; proper); efficiency; approximation methods; scalarization techniques; EPSILON-DUALITY THEOREM; VECTOR OPTIMIZATION; OPTIMALITY CONDITIONS; PROPER EFFICIENCY; RESPECT; SET;
D O I
10.1080/02331934.2012.668190
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this article, approximate solutions of multi-objective optimization problems are analysed. The notion of approximate solution suggested by Kutateladze is dealt with, and, utilizing different scalarization approaches, some necessary and sufficient conditions for E-(strong, weak, proper) efficiency are provided. Almost all of the provided results are established without any convexity assumption.
引用
收藏
页码:703 / 720
页数:18
相关论文
共 55 条
[21]   Unified approach and optimality conditions for approximate solutions of vector optimization problems [J].
Gutierrez, Cesar ;
Jimenez, Bienvenido ;
Novo, Vicente .
SIAM JOURNAL ON OPTIMIZATION, 2006, 17 (03) :688-710
[22]  
HELBIG S, 1994, OR SPEKTRUM, V16, P179, DOI 10.1007/BF01720705
[23]   PROPER EFFICIENCY WITH RESPECT TO CONES [J].
HENIG, MI .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1982, 36 (03) :387-407
[24]  
Jahn J., 2004, VECTOR OPTIMIZATION, P2011
[25]   ε-Conjugate maps and ε-conjugate duality in vector optimization with set-valued maps [J].
Jia, Ji-Hong ;
Li, Zhong-Fei .
OPTIMIZATION, 2008, 57 (05) :621-633
[26]   A MODIFIED WEIGHTED CHEBYSHEV METRIC FOR MULTIPLE OBJECTIVE PROGRAMMING [J].
KALISZEWSKI, I .
COMPUTERS & OPERATIONS RESEARCH, 1987, 14 (04) :315-323
[27]   Efficient solutions and bounds on tradeoffs [J].
Kaliszewski, I ;
Michalowski, W .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1997, 94 (02) :381-394
[28]   Sensitivity analysis on the priority of the objective functions in lexicographic multiple objective linear programs [J].
Khorram, E. ;
Zarepisheh, M. ;
Ghaznavi-ghosoni, B. A. .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2010, 207 (03) :1162-1168
[29]  
Kutateladze SemenS., 1979, SOVIET MATH DOKLADY, V20, P391
[30]  
LI Z, 1994, J U INNER MONGOLIA, V25, P599