Scalarization for characterization of approximate strong/weak/proper efficiency in multi-objective optimization

被引:31
作者
Ghaznavi-Ghosoni, B. A. [1 ]
Khorram, E. [1 ]
Soleimani-damaneh, M. [2 ]
机构
[1] Amirkabir Univ Technol, Fac Math & Comp Sci, Tehran 15914, Iran
[2] Univ Tehran, Coll Sci, Sch Math Stat & Comp Sci, Tehran, Iran
关键词
multi-objective programming; E-(strong; weak; proper); efficiency; approximation methods; scalarization techniques; EPSILON-DUALITY THEOREM; VECTOR OPTIMIZATION; OPTIMALITY CONDITIONS; PROPER EFFICIENCY; RESPECT; SET;
D O I
10.1080/02331934.2012.668190
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this article, approximate solutions of multi-objective optimization problems are analysed. The notion of approximate solution suggested by Kutateladze is dealt with, and, utilizing different scalarization approaches, some necessary and sufficient conditions for E-(strong, weak, proper) efficiency are provided. Almost all of the provided results are established without any convexity assumption.
引用
收藏
页码:703 / 720
页数:18
相关论文
共 55 条
[1]  
[Anonymous], 2005, MULTICRITERIA OPTIMI
[2]  
Ansari Q.H., 2011, RECENT DEV VECTOR OP
[3]   Relative Pareto minimizers for multiobjective problems: existence and optimality conditions [J].
Bao, Truong Q. ;
Mordukhovich, Boris S. .
MATHEMATICAL PROGRAMMING, 2010, 122 (02) :301-347
[4]  
Beldiman M, 2008, B MATH SOC SCI MATH, V51, P109
[5]   IMPROVED DEFINITION OF PROPER EFFICIENCY FOR VECTOR MAXIMIZATION WITH RESPECT TO CONES [J].
BENSON, HP .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1979, 71 (01) :232-241
[6]   PROPER EFFICIENT POINTS FOR MAXIMIZATIONS WITH RESPECT TO CONES [J].
BORWEIN, J .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1977, 15 (01) :57-63
[7]   On approximate solutions in convex vector optimization [J].
Deng, S .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1997, 35 (06) :2128-2136
[8]   On approximate minima in vector optimization [J].
Dutta, J ;
Vetrivel, V .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2001, 22 (7-8) :845-859
[9]   Improved ε-constraint method for multiobjective programming [J].
Ehrgott, M. ;
Ruzika, S. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2008, 138 (03) :375-396
[10]  
Eichfelder G, 2008, VECTOR OPTIM, P1, DOI 10.1007/978-3-540-79159-1