ANDERSON-BERNOULLI MODELS

被引:3
作者
Bourgain, J. [1 ]
机构
[1] Inst Adv Study, Sch Math, Princeton, NJ 08540 USA
关键词
Anderson localization; random Bernoulli potential;
D O I
10.17323/1609-4514-2005-5-3-523-536
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the exponential localization of the eigenfunctions of the Anderson model in R-d in the regime of large coupling constant for the random potentials which values are independent and Bernoulli distributed.
引用
收藏
页码:523 / 536
页数:14
相关论文
共 8 条
[1]  
Bourgain J, 2004, LECT NOTES MATH, V1850, P77
[2]   On localization in the continuous Anderson-Bernoulli model in higher dimension [J].
Bourgain, J ;
Kenig, CE .
INVENTIONES MATHEMATICAE, 2005, 161 (02) :389-426
[3]   ANDERSON LOCALIZATION FOR BERNOULLI AND OTHER SINGULAR POTENTIALS [J].
CARMONA, R ;
KLEIN, A ;
MARTINELLI, F .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 108 (01) :41-66
[4]  
Damanik D, 2002, DUKE MATH J, V114, P59
[5]  
Escauriaza L., 2003, Contemp. Math, V333, P79
[6]  
HORMANDER L, 1983, COMMUN PART DIFF EQ, V8, P21
[7]   ON THE POSSIBLE RATE OF DECAY AT INFINITY OF SOLUTIONS OF 2ND-ORDER PARTIAL-DIFFERENTIAL EQUATIONS [J].
MESHKOV, VZ .
MATHEMATICS OF THE USSR-SBORNIK, 1992, 72 (02) :343-361
[8]   Some harmonic analysis questions suggested by Anderson-Bernoulli models [J].
Shubin, C ;
Vakilian, R ;
Wolff, T .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1998, 8 (05) :932-964