Global solution for a generalized Boussinesq equation

被引:37
作者
Wang, Shubin [1 ]
Xue, Hongxia [1 ]
机构
[1] Zhengzhou Univ, Dept Math, Zhengzhou 450052, Peoples R China
基金
中国国家自然科学基金;
关键词
Boussinesq equation; Cauchy problem; stable set and unstable set; existence of global solution; nonexistence;
D O I
10.1016/j.amc.2008.06.059
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper considers the existence and uniqueness of the solution to the Cauchy problem for a class of Boussinesq equation, proves the global existence and finite time blowup of the solution to the problem by the potential well method. (C) 2008 Published by Elsevier Inc.
引用
收藏
页码:130 / 136
页数:7
相关论文
共 28 条
[1]   GLOBAL EXISTENCE OF SMOOTH SOLUTIONS AND STABILITY OF SOLITARY WAVES FOR A GENERALIZED BOUSSINESQ EQUATION [J].
BONA, JL ;
SACHS, RL .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 118 (01) :15-29
[2]  
BOUSSINESQ J, 1877, MEMOIRES PRESENTES 2, V3, P1
[3]  
Boussinesq J., 1872, J. Math. Pures Appl, V17, P55
[4]  
Chen GW, 1999, NONLINEAR ANAL-THEOR, V36, P961
[5]  
Fan Y., 1996, COMMUN PART DIFF EQ, V21, P1253
[6]  
GODEFROY AD, 1998, IMA J APPL MATH, V60, P123
[7]  
JORGE A, 2003, J MATH ANAL APPL, V279, P135
[8]   GLOBAL EXISTENCE OF SMALL SOLUTIONS FOR A GENERALIZED BOUSSINESQ EQUATION [J].
LINARES, F .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1993, 106 (02) :257-293
[9]   ASYMPTOTIC-BEHAVIOR OF SOLUTIONS OF A GENERALIZED BOUSSINESQ TYPE EQUATION [J].
LINARES, F ;
SCIALOM, M .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1995, 25 (11) :1147-1158
[10]   SOLUTIONS OF THE BOUSSINESQ EQUATION ON A PERIODIC DOMAIN [J].
LIU, FL ;
RUSSELL, DL .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1995, 192 (01) :194-219