Characterizations of convexity via Hadamard's inequality

被引:32
作者
Bessenyei, M [1 ]
Páles, Z [1 ]
机构
[1] Univ Debrecen, Math Inst, H-4010 Debrecen, Hungary
来源
MATHEMATICAL INEQUALITIES & APPLICATIONS | 2006年 / 9卷 / 01期
关键词
Hermite-Hadamard inequality; higher-order generalized convexity; Chebyshev system;
D O I
10.7153/mia-09-06
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The classical Hermite-Hadamard inequality, under some weak regularity conditions, characterizes convexity. The aim of the present paper is to give analogous result for the case of generalized convexity induced by two dimensional Chebyshev systems. The basic tool of the proofs is a characterization theorem of continuous, non-convex functions.
引用
收藏
页码:53 / 62
页数:10
相关论文
共 16 条
[1]  
[Anonymous], 2004, JIPAM J INEQUAL PURE
[2]  
[Anonymous], 2005, AEQUATIONES MATH
[3]  
Bakula MK, 2006, MATH INEQUAL APPL, V9, P43
[4]  
Beckenbach E. F., 1937, Bull. Amer. Math. Soc., V43, P363
[5]  
Bessenyei M, 2004, PUBL MATH DEBRECEN, V65, P223
[6]  
Bessenyei M, 2003, MATH INEQUAL APPL, V6, P379
[7]  
Bessenyei M, 2002, PUBL MATH DEBRECEN, V61, P623
[8]  
Bessenyei M., 2004, Acta Sci. Math. (Szeged), V70, P13
[9]  
Hadamard J., 1893, J MATH PURES APPL, V58, P171
[10]  
Karlin S., 1966, TCHEBYCHEFF SYSTEMS