Linear subspaces of matrices associated to a Ferrers diagram and with a prescribed lower bound for their rank

被引:8
作者
Ballico, E. [1 ]
机构
[1] Univ Trento, Dept Math, I-38123 Povo, TN, Italy
关键词
Linear subspaces of matrices; Rank; Number field; Finite field; SPACES; CODES;
D O I
10.1016/j.laa.2015.05.028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Fix a field K, a subset P subset of {1,, ..,k} x {1,...,m} and an integer delta <= min{k, m}. Let C(m, k, P, K) be the vector space of all k x m matrices with entries a(i,j) = 0 if (i, j) is not an element of P. Let alpha(delta, K) be the maximal dimension of a linear subspace V subset of C(m, k, P, K) such that all A is an element of V \ {0} have rank >= delta. We show that known lower bounds for alpha(delta, K), for K one (resp. several, resp. almost all) finite field give the same lower bounds for some (resp. many, resp. all) number fields. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:30 / 39
页数:10
相关论文
共 20 条
[1]  
[Anonymous], 2010, P INT S MATH THEOR N
[2]  
Atiyah M. F., 1969, Introduction to Commutative Algebra
[3]   LARGE SPACES OF MATRICES OF BOUNDED RANK [J].
ATKINSON, MD ;
LLOYD, S .
QUARTERLY JOURNAL OF MATHEMATICS, 1980, 31 (123) :253-262
[5]   Subspaces of matrices with special rank properties [J].
Dumas, Jean-Guillaume ;
Gow, Rod ;
McGuire, Gary ;
Sheekey, John .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 433 (01) :191-202
[6]  
Eisenbud D., 1988, ADV MATH, V37, P135
[7]   Error-Correcting Codes in Projective Spaces Via Rank-Metric Codes and Ferrers Diagrams [J].
Etzion, Tuvi ;
Silberstein, Natalia .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2009, 55 (07) :2909-2919
[8]  
Gabidulin E. M., 1985, Problems of Information Transmission, V21, P1
[9]  
Gorla E., ARXIV14052736V2
[10]   INVERTIBLE PRESERVERS AND ALGEBRAIC-GROUPS [J].
GURALNICK, RM .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1994, 212 :249-257