Amplitude Death Induced by Intrinsic Noise in a System of Three Coupled Stochastic Brusselators

被引:3
|
作者
Diaz-Hernandez, O. [1 ]
Ramirez-Alvarez, Elizeth [1 ]
Flores-Rosas, A. [1 ]
Enriquez-Flores, C. I. [2 ]
Santillan, M. [3 ]
Padilla-Longoria, Pablo [4 ]
Escalera Santos, Gerardo J. [1 ]
机构
[1] Univ Autonoma Chiapas, Fac Ciencias Fis & Matemat, Tuxtla Gutierrez 29050, Chiapas, Mexico
[2] Univ Autonoma Chiapas, Fac Ciencias Fis & Matemat, Conacyt, Tuxtla Gutierrez 29050, Chiapas, Mexico
[3] Inst Politecn Nacl, Ctr Invest & Estudios Avanzados, Monterrey 66600, Nuevo Leon, Mexico
[4] Univ Nacl Autonoma Mexico, Inst Invest Matemat Aplicadas & Sistemas, Mexico City 04510, DF, Mexico
来源
JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS | 2019年 / 14卷 / 04期
关键词
SYNCHRONIZATION; OSCILLATORS; PHASE; MODEL; BEHAVIOR; DRIVEN; POPULATIONS; NETWORKS; RHYTHMS; SPIKING;
D O I
10.1115/1.4042322
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this work, we study the interplay between intrinsic biochemical noise and the diffusive coupling, in an array of three stochastic Brusselators that present a limit-cycle dynamics. The stochastic dynamics is simulated by means of the Gillespie algorithm. The intensity of the intrinsic biochemical noise is regulated by changing the value of the system volume (Omega), while keeping constant the chemical species' concentration. To characterize the system behavior, we measure the average spike amplitude (ASA), the order parameter R, the average interspike interval (ISI), and the coefficient of variation (CV) for the interspike interval. By analyzing how these measures depend on Omega and the coupling strength, we observe that when the coupling parameter is different from zero, increasing the level of intrinsic noise beyond a given threshold suddenly drives the spike amplitude, SA, to zero and makes ISI increase exponentially. These results provide numerical evidence that amplitude death (AD) takes place via a homoclinic bifurcation.
引用
收藏
页数:7
相关论文
共 34 条
  • [1] Intrinsic common noise in a system of two coupled Brusselators
    Nandi, Amitabha
    Lindner, Benjamin
    CHEMICAL PHYSICS, 2010, 375 (2-3) : 348 - 358
  • [2] Amplitude death of coupled hair bundles with stochastic channel noise
    Kim, Kyung-Joong
    Ahn, Kang-Hun
    PHYSICAL REVIEW E, 2014, 89 (04):
  • [3] Mobility and density induced amplitude death in metapopulation networks of coupled oscillators
    Shen, Chuansheng
    Chen, Hanshuang
    Hou, Zhonghuai
    CHAOS, 2014, 24 (04)
  • [4] Transition to Amplitude Death in Coupled System with Small Number of Nonlinear Oscillators
    Chen Hai-Ling
    Yang Jun-Zhong
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2009, 51 (03) : 460 - 464
  • [5] intrinsic Noise Analyzer: A Software Package for the Exploration of Stochastic Biochemical Kinetics Using the System Size Expansion
    Thomas, Philipp
    Matuschek, Hannes
    Grima, Ramon
    PLOS ONE, 2012, 7 (06):
  • [6] INTERPLAY BETWEEN CHAOS AND EXTERNAL NOISE IN AN EXTENDED SYSTEM: IMPROVED FORECASTING DUE TO INTRINSIC STOCHASTIC RESONANT PHENOMENA
    Revelli, Jorge A.
    Rodriguez, Miguel A.
    Wio, Horacio S.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (02): : 213 - 224
  • [7] Stochastic chaos in chemical Lorenz system: Interplay of intrinsic noise and nonlinearity
    Thounaojam, Umeshkanta Singh
    CHAOS SOLITONS & FRACTALS, 2022, 165
  • [8] Oscillator death induced by amplitude-dependent coupling in repulsively coupled oscillators
    Liu, Weiqing
    Xiao, Guibao
    Zhu, Yun
    Zhan, Meng
    Xiao, Jinghua
    Kurths, Juergen
    PHYSICAL REVIEW E, 2015, 91 (05):
  • [9] Trichotomous noise induced stochastic resonance in a linear system
    Lang, Rong-ling
    Yang, Liang
    Qin, Hong-lei
    Di, Gen-hu
    NONLINEAR DYNAMICS, 2012, 69 (03) : 1423 - 1427
  • [10] Bifurcation, amplitude death and oscillation patterns in a system of three coupled van der Pol oscillators with diffusively delayed velocity coupling
    Song, Yongli
    Xu, Jian
    Zhang, Tonghua
    CHAOS, 2011, 21 (02)