Optimizing the Michaelis complex of trimethylamine dehydrogenase - Identification of interactions that perturb the ionization of substrate and facilitate catalysis with trimethylamine base

被引:31
作者
Basran, J
Sutcliffe, MJ
Scrutton, NS
机构
[1] Univ Leicester, Dept Biochem, Leicester LE1 7RH, Leics, England
[2] Univ Leicester, Dept Chem, Leicester LE1 7RH, Leics, England
关键词
D O I
10.1074/jbc.M108296200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recent evidence from isotope studies supports the view that catalysis by trimethylamine dehydrogenase (TMADH) proceeds from a Michaelis complex involving trimethylamine base and not, as thought previously, trimethylammonium cation. In native TMADH reduction of the flavin by substrate (perdeuterated trimethylamine) is influenced by two ionizations in the Michaelis complex with pK(a) values of 6.5 and 8.4; maximal activity is realized in the alkaline region. The latter ionization has been attributed to residue His-172 and, more recently, the former to the ionization of substrate itself. In the Michaelis complex, the ionization of substrate (pK(a) similar to 6.5 for perdeuterated substrate) is perturbed by similar to -3.3 to -3.6 pH units compared with that of free trimethylamine (pK(a) = 9.8) and free perdeuterated trimethylamine (pK(a) = 10.1), respectively, thus stabilizing trimethylamine base by similar to2 kJ mol(-1). We show, by targeted mutagenesis and stopped-flow studies that this reduction of the pK(a) is a consequence of electronic interaction with residues Tyr-60 and His-172, thus these two residues are key for optimizing catalysis in the physiological pH range. We also show that residue Tyr-174, the remaining ionizable group in the active site that we have not targeted previously by mutagenesis, is not implicated in the pH dependence of flavin reduction. Formation of a Michaelis complex with trimethylamine base is consistent with a mechanism of amine oxidation that we advanced in our previous computational and kinetic studies which involves nucleophilic attack by the substrate nitrogen atom on the electrophilic C4a atom of the flavin isoalloxazine ring. Stabilization of trimethylamine base in the Michaelis complex over that in free solution is key to optimizing catalysis at physiological pH in TMADH, and may be of general importance in the mechanism of other amine dehydrogenases that require the unprotonated form of the substrate for catalysis.
引用
收藏
页码:42887 / 42892
页数:6
相关论文
共 37 条
[1]   The role of Tyr-169 of trimethylamine dehydrogenase in substrate oxidation and magnetic interaction between FMN cofactor and the 4Fe/4S center [J].
Basran, J ;
Jang, MH ;
Sutcliffe, MJ ;
Hille, R ;
Scrutton, NS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (19) :13155-13161
[2]   Differential coupling through Val-344 and Tyr-442 of trimethylamine dehydrogenase in electron transfer reactions with ferricenium ions and electron transferring flavoprotein [J].
Basran, J ;
Chohan, KK ;
Sutcliffe, MJ ;
Scrutton, NS .
BIOCHEMISTRY, 2000, 39 (31) :9188-9200
[3]   Reductive half-reaction of the H172Q mutant of trimethylamine dehydrogenase: evidence against a carbanion mechanism and assignment of kinetically influential ionizations in the enzyme-substrate complex [J].
Basran, J ;
Sutcliffe, MJ ;
Hille, R ;
Scrutton, NS .
BIOCHEMICAL JOURNAL, 1999, 341 :307-314
[4]   Selective modification of alkylammonium ion specificity in trimethylamine dehydrogenase by the rational engineering of cation-pi bonding [J].
Basran, J ;
Mewies, M ;
Mathews, FS ;
Scrutton, NS .
BIOCHEMISTRY, 1997, 36 (08) :1989-1998
[5]   Deuterium isotope effects during carbon-hydrogen bond cleavage by trimethylamine dehydrogenase - Implications for mechanism and vibrationally assisted hydrogen tunneling in wild-type and mutant enzymes [J].
Basran, J ;
Sutcliffe, MJ ;
Scrutton, NS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (27) :24581-24587
[6]   Importance of barrier shape in enzyme-catalyzed reactions - Vibrationally assisted hydrogen tunneling in tryptophan tryptophylquinone-dependent amine dehydrogenases [J].
Basran, J ;
Patel, S ;
Sutcliffe, MJ ;
Scrutton, NS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (09) :6234-6242
[7]   Enzymatic H-transfer requires vibration-driven extreme tunneling [J].
Basran, J ;
Sutcliffe, MJ ;
Scrutton, NS .
BIOCHEMISTRY, 1999, 38 (10) :3218-3222
[8]  
BELLAMY HD, 1989, J BIOL CHEM, V264, P11887
[9]  
Davidson V. L., 2000, Enzyme-Catalyzed Electron and Radical Transfer: Subcellular Biochemistry, V35, P119
[10]   SHAPES OF CURVES OF PH-DEPENDENCE OF REACTIONS [J].
DIXON, HBF .
BIOCHEMICAL JOURNAL, 1973, 131 (01) :149-154