Finite-Time Blowup in a Supercritical Quasilinear Parabolic-Parabolic Keller-Segel System in Dimension 2

被引:90
作者
Cieslak, Tomasz [1 ]
Stinner, Christian [2 ]
机构
[1] Polish Acad Sci, Inst Math, PL-00956 Warsaw, Poland
[2] Univ Zurich, Inst Math, CH-8057 Zurich, Switzerland
关键词
Chemotaxis; Finite-time blowup; Infinite-time blowup; RADIALLY SYMMETRIC-SOLUTIONS; CHEMOTAXIS MODEL; 8-PI-PROBLEM; AGGREGATION; BOUNDEDNESS;
D O I
10.1007/s10440-013-9832-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note we show finite-time blowup of radially symmetric solutions to the quasilinear parabolic-parabolic two-dimensional Keller-Segel system for any positive mass. We prove this result by slightly adapting M. Winkler's method, which he introduced in (Winkler in J. Math. Pures Appl., 10.1016/j.matpur.2013.01.020, 2013) for the semilinear Keller-Segel system in dimensions at least three, to the two-dimensional setting. This is done in the case of nonlinear diffusion and also in the case of nonlinear cross-diffusion provided the nonlinear chemosensitivity term is assumed not to decay. Moreover, it is shown that the above-mentioned non-decay assumption is essential with respect to keeping the finite-time blowup result. Namely, we prove that without the non-decay assumption solutions exist globally in time, however infinite-time blowup may occur.
引用
收藏
页码:135 / 146
页数:12
相关论文
共 23 条
[1]   DYNAMIC THEORY OF QUASILINEAR PARABOLIC-SYSTEMS .3. GLOBAL EXISTENCE [J].
AMANN, H .
MATHEMATISCHE ZEITSCHRIFT, 1989, 202 (02) :219-250
[2]  
[Anonymous], 2007, Adv. Math. Sci. Appl.
[3]  
Biler P, 2006, TOPOL METHOD NONL AN, V27, P133
[4]  
Biler P., 1995, Colloq. Math, V68, P229, DOI DOI 10.4064/CM-68-2-229-239
[5]  
Biler P., 1998, Adv. Math. Sci. Appl., V8, P715
[6]   The 8π-problem for radially symmetric solutions of a chemotaxis model in the plane [J].
Biler, Piotr ;
Karch, Grzegorz ;
Laurencot, Philippe ;
Nadzieja, Tadeusz .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2006, 29 (13) :1563-1583
[7]  
Blanchet A, 2008, COMMUN PUR APPL MATH, V61, P1449, DOI 10.1002/cpa.20225
[8]  
Cieslak T., 2006, BANACH CTR PUBL, V74, P127
[9]   Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions [J].
Cieslak, Tomasz ;
Stinner, Christian .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (10) :5832-5851
[10]   Finite time blow-up for a one-dimensional quasilinear parabolic-parabolic chemotaxis system [J].
Cieslak, Tomasz ;
Laurencot, Philippe .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (01) :437-446