Comparative physiological and transcriptomic analyses reveal salt tolerance mechanisms of Zygosaccharomyces rouxii

被引:34
|
作者
Wang, Dingkang [1 ]
Hao, Zhiqiang [2 ]
Zhao, Jinsong [3 ]
Jin, Yao [1 ]
Huang, Jun [1 ]
Zhou, Rongqing [1 ]
Wu, Chongde [1 ]
机构
[1] Sichuan Univ, Key Lab Leather Chem & Engn, Minist Educ, Chengdu 610065, Sichuan, Peoples R China
[2] Shanxi Mubiao Cattle Ind Co Ltd, Lvliang 032107, Peoples R China
[3] Luzhou Laojiao Grp Co Ltd, Luzhou 646000, Peoples R China
基金
中国国家自然科学基金;
关键词
Zygosaccharomyces rouxii; Salt stress; Transcriptomic; Analysis; Stress response; STRESS; YEAST; FERMENTATION; METABOLOMICS; ADAPTATION; TREHALOSE; GENES;
D O I
10.1016/j.procbio.2019.04.009
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Zygosaccharomyces rouxii is widely applied in the production of fermented foods, where salt stress is a common environmental condition encountered. In this study, salt stress response of Z. rouxii was investigated based on physiological and transcriptomic analyses, and the results showed that Z. rouxii evoked a global regulation to resist salt stress. Analysis of physiological data showed that salt stress led to accumulation of glycerol and trehalose, and increase of unsaturated fatty acids-proportions. Intracellular amino acid analysis showed that the content of 4 amino acids (threonine, tyrosine, lysine and proline) increased significantly and 2 amino acids (serine and lysine) decreased. In addition, scanning electron microscopy analyses showed that the cell surface of Z. rouxii became rough and cell wall ruptured accompanied by intracellular spillover after salt stress. Comparison of transcriptome data showed that the genes involved in cellular metabolism and ribosome biosynthesis exhibited differently expression, which is consistent with the results of physiological data. Results presented in this study may be helpful in understanding the salt tolerance mechanism of Z. rouxii, and provide theoretical support of its application during food fermentation.
引用
收藏
页码:59 / 67
页数:9
相关论文
共 50 条
  • [41] Comparative physiological, metabolomic and transcriptomic analyses reveal the mechanisms of differences in pear fruit quality between distinct training systems
    Liu, Zheng
    Li, Xie-Yu
    Yang, Li
    Cheng, Yin-Sheng
    Nie, Xian-Shuang
    Wu, Tao
    BMC PLANT BIOLOGY, 2024, 24 (01)
  • [42] Comparative Physiological and Proteomic Analyses Reveal the Mechanisms of Brassinolide-Mediated Tolerance to Calcium Nitrate Stress in Tomato
    Zhang, Yi
    Chen, Haoting
    Li, Shuo
    Li, Yang
    Kanwar, Mukesh Kumar
    Li, Bin
    Bai, Longqiang
    Xu, Jin
    Shi, Yu
    FRONTIERS IN PLANT SCIENCE, 2021, 12
  • [43] Physiological and comparative transcriptome analyses reveal the mechanisms underlying waterlogging tolerance in a rapeseed anthocyanin-more mutant
    Li-Na Ding
    Rui Liu
    Teng Li
    Ming Li
    Xiao-Yan Liu
    Wei-Jie Wang
    Yan-Kun Yu
    Jun Cao
    Xiao-Li Tan
    Biotechnology for Biofuels and Bioproducts, 15
  • [44] Physiological and comparative transcriptome analyses reveal the mechanisms underlying waterlogging tolerance in a rapeseed anthocyanin-more mutant
    Ding, Li-Na
    Liu, Rui
    Li, Teng
    Li, Ming
    Liu, Xiao-Yan
    Wang, Wei-Jie
    Yu, Yan-Kun
    Cao, Jun
    Tan, Xiao-Li
    BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS, 2022, 15 (01):
  • [45] Comparative Physiological and Transcriptomic Analyses Reveal the Toxic Effects of ZnO Nanoparticles on Plant Growth
    Wan, Jinpeng
    Wang, Ruting
    Wang, Ruling
    Ju, Qiong
    Wang, Yibo
    Xu, Jin
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2019, 53 (08) : 4235 - 4244
  • [46] Comparative Transcriptome Analyses Reveal the Mechanisms Underlying Waterlogging Tolerance in Barley
    Zhu, Juan
    Yin, Haoxin
    Cao, Cong
    Sun, Chengqun
    Zhang, Mengna
    Hong, Yi
    Zhang, Yuhang
    Lv, Chao
    Guo, Baojian
    Wang, Feifei
    Xu, Rugen
    PLANTS-BASEL, 2025, 14 (01):
  • [47] Comparative Physiological and Transcriptomic Profiling Reveals the Characteristics of Tissue Tolerance Mechanisms in the japonica Rice Landrace Under Salt Stress
    Fauzia, Anisa Nazera
    Nampei, Mami
    Jiadkong, Kamonthip
    Shinta
    Sreewongchai, Tanee
    Ueda, Akihiro
    JOURNAL OF PLANT GROWTH REGULATION, 2024, 43 (10) : 3729 - 3742
  • [48] INTRACELLULAR NA+ AND K+ CONTENTS OF ZYGOSACCHAROMYCES-ROUXII MUTANTS DEFECTIVE IN SALT TOLERANCE
    USHIO, K
    OHTSUKA, H
    NAKATA, Y
    JOURNAL OF FERMENTATION AND BIOENGINEERING, 1992, 73 (01): : 11 - 15
  • [49] Tartary buckwheat protein hydrolysates enhance the salt tolerance of the soy sauce fermentation yeast Zygosaccharomyces rouxii
    Li, Yun-Cheng
    Du, Wen
    Meng, Fan-Bing
    Rao, Jia-Wei
    Liu, Da-Yu
    Peng, Lian-Xin
    FOOD CHEMISTRY, 2021, 342
  • [50] Comparative physiological and metabolomic analyses reveal mechanisms of Aspergillus aculeatus-mediated abiotic stress tolerance in tall fescue
    Xie, Yan
    Sun, Xiaoyan
    Feng, Qijia
    Luo, Hongji
    Wassie, Misganaw
    Amee, Maurice
    Amombo, Erick
    Chen, Liang
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2019, 142 : 342 - 350