Comparative physiological and transcriptomic analyses reveal salt tolerance mechanisms of Zygosaccharomyces rouxii

被引:34
|
作者
Wang, Dingkang [1 ]
Hao, Zhiqiang [2 ]
Zhao, Jinsong [3 ]
Jin, Yao [1 ]
Huang, Jun [1 ]
Zhou, Rongqing [1 ]
Wu, Chongde [1 ]
机构
[1] Sichuan Univ, Key Lab Leather Chem & Engn, Minist Educ, Chengdu 610065, Sichuan, Peoples R China
[2] Shanxi Mubiao Cattle Ind Co Ltd, Lvliang 032107, Peoples R China
[3] Luzhou Laojiao Grp Co Ltd, Luzhou 646000, Peoples R China
基金
中国国家自然科学基金;
关键词
Zygosaccharomyces rouxii; Salt stress; Transcriptomic; Analysis; Stress response; STRESS; YEAST; FERMENTATION; METABOLOMICS; ADAPTATION; TREHALOSE; GENES;
D O I
10.1016/j.procbio.2019.04.009
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Zygosaccharomyces rouxii is widely applied in the production of fermented foods, where salt stress is a common environmental condition encountered. In this study, salt stress response of Z. rouxii was investigated based on physiological and transcriptomic analyses, and the results showed that Z. rouxii evoked a global regulation to resist salt stress. Analysis of physiological data showed that salt stress led to accumulation of glycerol and trehalose, and increase of unsaturated fatty acids-proportions. Intracellular amino acid analysis showed that the content of 4 amino acids (threonine, tyrosine, lysine and proline) increased significantly and 2 amino acids (serine and lysine) decreased. In addition, scanning electron microscopy analyses showed that the cell surface of Z. rouxii became rough and cell wall ruptured accompanied by intracellular spillover after salt stress. Comparison of transcriptome data showed that the genes involved in cellular metabolism and ribosome biosynthesis exhibited differently expression, which is consistent with the results of physiological data. Results presented in this study may be helpful in understanding the salt tolerance mechanism of Z. rouxii, and provide theoretical support of its application during food fermentation.
引用
收藏
页码:59 / 67
页数:9
相关论文
共 50 条
  • [31] Cloning of the SAT1 gene concerned with salt tolerance of the yeast Zygosaccharomyces rouxii
    Ushio, K
    Otsuka, H
    Yoshikawa, S
    Taguchi, G
    Shimosaka, M
    Mitsui, N
    Okazaki, M
    JOURNAL OF FERMENTATION AND BIOENGINEERING, 1996, 82 (01): : 16 - 21
  • [32] Incorporation of Exogenous Fatty Acids Enhances the Salt Tolerance of Food Yeast Zygosaccharomyces rouxii
    Wang, Dingkang
    Chen, Hong
    Yang, Huan
    Yao, Shangjie
    Wu, Chongde
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2021, 69 (35) : 10301 - 10310
  • [33] Comparative physiological, biochemical and transcriptomic analyses to reveal potential regulatory mechanisms in response to starvation stress in Cipangopaludina chinensis
    Yuan, Chang
    Zhou, Kangqi
    Pan, Xianhui
    Wang, Dapeng
    Zhang, Caiqun
    Lin, Yong
    Chen, Zhong
    Qin, Junqi
    Du, Xuesong
    Huang, Yin
    COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS, 2024, 52
  • [34] Comparative Physiological and Transcriptomic Analyses Reveal the Actions of Melatonin in the Delay of Postharvest Physiological Deterioration of Cassava
    Hu, Wei
    Kong, Hua
    Guo, Yunling
    Zhang, Yuliang
    Ding, Zehong
    Tie, Weiwei
    Yan, Yan
    Huang, Qixing
    Peng, Ming
    Shi, Haitao
    Guo, Anping
    FRONTIERS IN PLANT SCIENCE, 2016, 7
  • [35] Comparative physiological and transcriptomic analyses reveal key regulatory networks and potential hub genes controlling peanut chilling tolerance
    Zhang, He
    Jiang, Chunji
    Lei, Jingna
    Dong, Jiale
    Ren, Jingyao
    Shi, Xiaolong
    Zhong, Chao
    Wang, Xiaoguang
    Zhao, Xinhua
    Yu, Haiqiu
    GENOMICS, 2022, 114 (02)
  • [36] Comparative physiological, transcriptomic, and WGCNA analyses reveal the key genes and regulatory pathways associated with drought tolerance in Tartary buckwheat
    Meng, Heng-Ling
    Sun, Pei-Yuan
    Wang, Jia-Rui
    Sun, Xiao-Qian
    Zheng, Chuan-Zhi
    Fan, Ting
    Chen, Qing-Fu
    Li, Hong-You
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [37] Exogenous fatty acid renders the improved salt tolerance in Zygosaccharomyces rouxii by altering lipid metabolism
    Wang, Dingkang
    He, Zixi
    Liu, Mingming
    Jin, Yao
    Zhao, Jinsong
    Zhou, Rongqing
    Wu, Chongde
    Qin, Jiufu
    LWT-FOOD SCIENCE AND TECHNOLOGY, 2023, 177
  • [38] ISOLATION AND CHARACTERIZATION OF ZYGOSACCHAROMYCES-ROUXII MUTANTS DEFECTIVE IN PROTON PUMPOUT ACTIVITY AND SALT TOLERANCE
    YOSHIKAWA, S
    CHIKARA, KI
    HASHIMOTO, H
    MITSUI, N
    SHIMOSAKA, M
    OKAZAKI, M
    JOURNAL OF FERMENTATION AND BIOENGINEERING, 1995, 79 (01): : 6 - 10
  • [39] Comparative physiological and transcriptomic analyses reveal the mechanisms of CO2 enrichment in promoting the growth and quality in Lactuca sativa
    Song, Hongxia
    Wu, Peiqi
    Lu, Xiaonan
    Wang, Bei
    Song, Tianyue
    Lu, Qiang
    Li, Meilan
    Xu, Xiaoyong
    PLOS ONE, 2023, 18 (02):
  • [40] Comparative physiological, metabolomic and transcriptomic analyses reveal the mechanisms of differences in pear fruit quality between distinct training systems
    Zheng Liu
    Xie-Yu Li
    Li Yang
    Yin-Sheng Cheng
    Xian-Shuang Nie
    Tao Wu
    BMC Plant Biology, 24