Hartman-Wintner-type inequalities for a class of nonlocal fractional boundary value problems

被引:18
作者
Cabrera, I. [1 ]
Sadarangani, K. [1 ]
Samet, B. [2 ]
机构
[1] Univ Las Palmas Gran Canaria, Dept Matemat, Campus Tafira Baja, Las Palmas Gran Canaria 35017, Spain
[2] King Saud Univ, Coll Sci, Dept Math, POB 2455, Riyadh 11451, Saudi Arabia
关键词
Hartman-Wintner-type inequality; Lyapunov-type inequality; fractional boundary value problem; nonlocal; Green function; eigenvalue; LYAPUNOV-TYPE INEQUALITIES;
D O I
10.1002/mma.3972
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish new Hartman-Wintner-type inequalities for a class of nonlocal fractional boundary value problems. As an application, we obtain a lower bound for the eigenvalues of corresponding equations. Copyright (C) 2016 John Wiley & Sons, Ltd.
引用
收藏
页码:129 / 136
页数:8
相关论文
共 21 条
[1]  
Alsulami HH, 2015, J INEQUAL APPL, DOI 10.1186/s13660-015-0746-9
[2]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[3]  
[Anonymous], 2006, Journal of the Electrochemical Society
[4]   Opial's inequality and oscillation of 2nd order equations [J].
Brown, RC ;
Hinton, DB .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (04) :1123-1129
[6]  
Cheng S. S., 1991, Fasc. Math., V23, P25
[7]  
Cheng S.S., 1983, Hokkaido Math. J, V12, P105
[8]   On a Lyapunov-type inequality and the zeros of a certain Mittag-Leffler function [J].
Ferreira, Rui A. C. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 412 (02) :1058-1063
[9]   A Lyapunov-type inequality for a fractional boundary value problem [J].
Ferreira, Rui A. C. .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2013, 16 (04) :978-984
[10]  
Hartman P., 2002, ORDINARY DIFFERENTIA, V2nd edn