Augmented Lagrangian with Variable Splitting for Faster Non-Cartesian L1-SPIRiT MR Image Reconstruction

被引:43
作者
Weller, Daniel S. [1 ]
Ramani, Sathish [2 ]
Fessler, Jeffrey A. [1 ]
机构
[1] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
[2] GE Global Res, Niskayuna, NY 12309 USA
基金
美国国家卫生研究院;
关键词
Augmented Lagrangian; compressed sensing; magnetic resonance imaging (MRI); non-Cartesian reconstruction; parallel imaging reconstruction; preconditioning; TOEPLITZ; ALGORITHM;
D O I
10.1109/TMI.2013.2285046
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
SPIRiT (iterative self-consistent parallel imaging reconstruction), and its sparsity-regularized variant L-1-SPIRiT, are compatible with both Cartesian and non-Cartesian magnetic resonance imaging sampling trajectories. However, the non-Cartesian framework is more expensive computationally, involving a nonuniform Fourier transform with a nontrivial Gram matrix. We propose a novel implementation of the regularized reconstruction problem using variable splitting, alternating minimization of the augmented Lagrangian, and careful preconditioning. Our new method based on the alternating direction method of multipliers converges much faster than existing methods because of the preconditioners' heightened effectiveness. We demonstrate such rapid convergence substantially improves image quality for a fixed computation time. Our framework is a step forward towards rapid non-Cartesian L-1-SPIRiT reconstructions.
引用
收藏
页码:351 / 361
页数:11
相关论文
共 42 条
  • [1] Augmented Lagrangian based reconstruction of non-uniformly sub-Nyquist sampled MRI data
    Aelterman, Jan
    Hiep Quang Luong
    Goossens, Bart
    Pizurica, Aleksandra
    Philips, Wilfried
    [J]. SIGNAL PROCESSING, 2011, 91 (12) : 2731 - 2742
  • [2] Benzi M., 2005, J COMP PHYS, V182, P418
  • [3] Undersampled radial MRI with multiple coils. Iterative image reconstruction using a total variation constraint
    Block, Kai Tobias
    Uecker, Martin
    Frahm, Jens
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2007, 57 (06) : 1086 - 1098
  • [4] Block KT., 2011, Proc Intl Soc Mag Reson Med, V19, P2816
  • [5] Distributed optimization and statistical learning via the alternating direction method of multipliers
    Boyd S.
    Parikh N.
    Chu E.
    Peleato B.
    Eckstein J.
    [J]. Foundations and Trends in Machine Learning, 2010, 3 (01): : 1 - 122
  • [6] Array compression for MRI with large coil arrays
    Buehrer, Martin
    Pruessmann, Klaas P.
    Boesiger, Peter
    Kozerke, Sebastian
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2007, 57 (06) : 1131 - 1139
  • [7] Conjugate gradient methods for toeplitz systems
    Chan, RH
    Ng, MK
    [J]. SIAM REVIEW, 1996, 38 (03) : 427 - 482
  • [8] AN OPTIMAL CIRCULANT PRECONDITIONER FOR TOEPLITZ-SYSTEMS
    CHAN, TF
    [J]. SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1988, 9 (04): : 766 - 771
  • [9] Chen K., 2005, Cambridge Monographs on Applied and Computational Mathematics
  • [10] Signal recovery by proximal forward-backward splitting
    Combettes, PL
    Wajs, VR
    [J]. MULTISCALE MODELING & SIMULATION, 2005, 4 (04) : 1168 - 1200