Sublimation of terrestrial permafrost and the implications for ice-loss processes on Mars

被引:32
作者
Douglas, Thomas A. [1 ]
Mellon, Michael T. [2 ]
机构
[1] US Army Cold Reg Res & Engn Lab, 9th Ave,Bldg 4070, Ft Wainwright, AK 99703 USA
[2] Cornell Univ, Cornell Ctr Astrophys & Planetary Sci, 442 Space Sci Bldg, Ithaca, NY USA
关键词
GROUND ICE; CLIMATE-CHANGE; BEACON VALLEY; LIQUID WATER; DRY VALLEYS; STABILITY; SURFACE; TEMPERATURES; DEGRADATION; EVAPORATION;
D O I
10.1038/s41467-019-09410-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Sublimation of ice is rate-controlled by vapor transport away from its outer surface and may have generated landforms on Mars. In ice-cemented ground (permafrost), the lag of soil particles remaining after ice loss decreases subsequent sublimation. Varying soil-ice ratios lead to differential lag development. Here we report 52 years of sublimation measurements from a permafrost tunnel near Fairbanks, Alaska, and constrain models of sublimation, diffusion through porous soil, and lag formation. We derive the first long-term in situ effective diffusion coefficient of ice-free loess, a Mars analog soil, of 9.05 x 10(-6) m(2) s(-1), similar to 5x larger than past theoretical studies. Exposed ice-wedge sublimation proceeds similar to 4x faster than predicted from analogy to heat loss by buoyant convection, a theory frequently employed in Mars studies. Our results can be used to map near-surface ice-content differences, identify surface processes controlling landform formation and morphology, and identify target landing sites for human exploration of Mars.
引用
收藏
页数:9
相关论文
共 52 条
[1]  
[Anonymous], ELEMENTA
[2]  
[Anonymous], GEOPHYSICS
[3]  
[Anonymous], GEOPHYS RES LETT
[4]  
[Anonymous], J HEAT TRANSFER
[5]  
[Anonymous], ALSK PERM PERIG P
[6]   Interactive effects of wildfire and climate on permafrost degradation in Alaskan lowland forests [J].
Brown, Dana R. N. ;
Jorgenson, M. Torre ;
Douglas, Thomas A. ;
Romanovsky, Vladimir E. ;
Kielland, Knut ;
Hiemstra, Christopher ;
Euskirchen, Eugenie S. ;
Ruess, Roger W. .
JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2015, 120 (08) :1619-1637
[7]   Geologic history of Mars [J].
Carr, Michael H. ;
Head, James W., III .
EARTH AND PLANETARY SCIENCE LETTERS, 2010, 294 (3-4) :185-203
[8]   Experimental study of the effect of wind on the stability of water ice on Mars [J].
Chittenden, J. D. ;
Chevrier, V. ;
Roe, L. A. ;
Bryson, K. ;
Pilgrim, R. ;
Sears, D. W. G. .
ICARUS, 2008, 196 (02) :477-487
[9]   THE STABILITY OF GROUND ICE IN THE EQUATORIAL REGION OF MARS [J].
CLIFFORD, SM ;
HILLEL, D .
JOURNAL OF GEOPHYSICAL RESEARCH, 1983, 88 (NB3) :2456-2474
[10]   Biogeochemical and Geocryological Characteristics of Wedge and Thermokarst-Cave Ice in the CRREL Permafrost Tunnel, Alaska [J].
Douglas, Thomas A. ;
Fortier, Daniel ;
Shur, Yuri L. ;
Kanevskiy, Mikhail Z. ;
Guo, Laodong ;
Cai, Yihua ;
Bray, Matthew T. .
PERMAFROST AND PERIGLACIAL PROCESSES, 2011, 22 (02) :120-128