Longitudinal ComBat: A method for harmonizing longitudinal multi-scanner imaging data

被引:151
作者
Beer, Joanne C. [1 ]
Tustison, Nicholas J. [2 ]
Cook, Philip A. [3 ,4 ]
Davatzikos, Christos [5 ]
Sheline, Yvette, I [3 ,4 ,6 ]
Shinohara, Russell T. [1 ,4 ]
Linn, Kristin A. [1 ]
机构
[1] Univ Penn, Penn Stat Imaging & Visualizat Endeavor PennS Ctr, Perelman Sch Med, Dept Biostat Epidemiol & Informat, Philadelphia, PA 19104 USA
[2] Univ Virginia, Dept Radiol & Med Imaging, Charlottesville, VA 22903 USA
[3] Univ Penn, Ctr Neuromodulat Depress & Stress, Perelman Sch Med, Dept Psychiat, Philadelphia, PA 19104 USA
[4] Univ Penn, Perelman Sch Med, Dept Radiol, Philadelphia, PA 19104 USA
[5] Univ Penn, Ctr Biomed Comp & Analyt, Perelman Sch Med, Dept Radiol, Philadelphia, PA 19104 USA
[6] Univ Penn, Perelman Sch Med, Dept Neurol, Philadelphia, PA 19104 USA
关键词
ADNI; Alzheimer's; ComBat; Cortical thickness; Harmonization; MRI; CORTICAL THICKNESS; MRI; RELIABILITY; SIGNATURE; TESTS; MILD; ADNI;
D O I
10.1016/j.neuroimage.2020.117129
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
While aggregation of neuroimaging datasets from multiple sites and scanners can yield increased statistical power, it also presents challenges due to systematic scanner effects. This unwanted technical variability can introduce noise and bias into estimation of biological variability of interest. We propose a method for harmonizing longitudinal multi-scanner imaging data based on ComBat, a method originally developed for genomics and later adapted to cross-sectional neuroimaging data. Using longitudinal cortical thickness measurements from 663 participants in the Alzheimer's Disease Neuroimaging Initiative (ADNI) study, we demonstrate the presence of additive and multiplicative scanner effects in various brain regions. We compare estimates of the association between diagnosis and change in cortical thickness over time using three versions of the ADNI data: unharmonized data, data harmonized using cross-sectional ComBat, and data harmonized using longitudinal ComBat. In simulation studies, we show that longitudinal ComBat is more powerful for detecting longitudinal change than cross-sectional ComBat and controls the type I error rate better than unharmonized data with scanner included as a covariate. The proposed method would be useful for other types of longitudinal data requiring harmonization, such as genomic data, or neuroimaging studies of neurodevelopment, psychiatric disorders, or other neurological diseases.
引用
收藏
页数:13
相关论文
共 31 条
[11]  
Halekoh U, 2014, J STAT SOFTW, V59, P1
[12]   Reliability of MRI-derived measurements of human cerebral cortical thickness: The effects of field strength, scanner upgrade and manufacturer [J].
Han, Xiao ;
Jovicich, Jorge ;
Salat, David ;
van der Kouwe, Andre ;
Quinn, Brian ;
Czanner, Silvester ;
Busa, Evelina ;
Pacheco, Jenni ;
Albert, Marilyn ;
Killiany, Ronald ;
Maguire, Paul ;
Rosas, Diana ;
Makris, Nikos ;
Dale, Anders ;
Dickerson, Bradford ;
Fischl, Bruce .
NEUROIMAGE, 2006, 32 (01) :180-194
[13]   The Alzheimer's Disease Neuroimaging Initiative (ADNI): MRI methods [J].
Jack, Clifford R., Jr. ;
Bernstein, Matt A. ;
Fox, Nick C. ;
Thompson, Paul ;
Alexander, Gene ;
Harvey, Danielle ;
Borowski, Bret ;
Britson, Paula J. ;
Whitwell, Jennifer L. ;
Ward, Chadwick ;
Dale, Anders M. ;
Felmlee, Joel P. ;
Gunter, Jeffrey L. ;
Hill, Derek L. G. ;
Killiany, Ron ;
Schuff, Norbert ;
Fox-Bosetti, Sabrina ;
Lin, Chen ;
Studholme, Colin ;
DeCarli, Charles S. ;
Krueger, Gunnar ;
Ward, Heidi A. ;
Metzger, Gregory J. ;
Scott, Katherine T. ;
Mallozzi, Richard ;
Blezek, Daniel ;
Levy, Joshua ;
Debbins, Josef P. ;
Fleisher, Adam S. ;
Albert, Marilyn ;
Green, Robert ;
Bartzokis, George ;
Glover, Gary ;
Mugler, John ;
Weiner, Michael W. .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2008, 27 (04) :685-691
[14]   Adjusting batch effects in microarray expression data using empirical Bayes methods [J].
Johnson, W. Evan ;
Li, Cheng ;
Rabinovic, Ariel .
BIOSTATISTICS, 2007, 8 (01) :118-127
[15]   Reliability in multi-site structural MRI studies: Effects of gradient non-linearity correction on phantom and human data [J].
Jovicich, J ;
Czanner, S ;
Greve, D ;
Haley, E ;
van der Kouwe, A ;
Gollub, R ;
Kennedy, D ;
Schmitt, F ;
Brown, G ;
MacFall, J ;
Fischl, B ;
Dale, A .
NEUROIMAGE, 2006, 30 (02) :436-443
[16]   Small sample inference for fixed effects from restricted maximum likelihood [J].
Kenward, MG ;
Roger, JH .
BIOMETRICS, 1997, 53 (03) :983-997
[17]   101 labeled brain images and a consistent human cortical labeling protocol [J].
Klein, Arno ;
Tourville, Jason .
FRONTIERS IN NEUROSCIENCE, 2012, 6
[18]   Estimating and accounting for the effect of MRI scanner changes on longitudinal whole-brain volume change measurements [J].
Lee, Hyunwoo ;
Nakamura, Kunio ;
Narayanan, Sridar ;
Brown, Robert A. ;
Arnold, Douglas L. .
NEUROIMAGE, 2019, 184 :555-565
[19]  
Matlab, 2018, MATLAB VERS 9 4 0 81
[20]   Removing Batch Effects from Longitudinal Gene Expression - Quantile Normalization Plus ComBat as Best Approach for Microarray Transcriptome Data [J].
Mueller, Christian ;
Schillert, Arne ;
Roethemeier, Caroline ;
Tregouet, David-Alexandre ;
Proust, Carole ;
Binder, Harald ;
Pfeiffer, Norbert ;
Beutel, Manfred ;
Lackner, Karl J. ;
Schnabel, Renate B. ;
Tiret, Laurence ;
Wild, Philipp S. ;
Blankenberg, Stefan ;
Zeller, Tanja ;
Ziegler, Andreas .
PLOS ONE, 2016, 11 (06)