Longitudinal ComBat: A method for harmonizing longitudinal multi-scanner imaging data

被引:151
作者
Beer, Joanne C. [1 ]
Tustison, Nicholas J. [2 ]
Cook, Philip A. [3 ,4 ]
Davatzikos, Christos [5 ]
Sheline, Yvette, I [3 ,4 ,6 ]
Shinohara, Russell T. [1 ,4 ]
Linn, Kristin A. [1 ]
机构
[1] Univ Penn, Penn Stat Imaging & Visualizat Endeavor PennS Ctr, Perelman Sch Med, Dept Biostat Epidemiol & Informat, Philadelphia, PA 19104 USA
[2] Univ Virginia, Dept Radiol & Med Imaging, Charlottesville, VA 22903 USA
[3] Univ Penn, Ctr Neuromodulat Depress & Stress, Perelman Sch Med, Dept Psychiat, Philadelphia, PA 19104 USA
[4] Univ Penn, Perelman Sch Med, Dept Radiol, Philadelphia, PA 19104 USA
[5] Univ Penn, Ctr Biomed Comp & Analyt, Perelman Sch Med, Dept Radiol, Philadelphia, PA 19104 USA
[6] Univ Penn, Perelman Sch Med, Dept Neurol, Philadelphia, PA 19104 USA
关键词
ADNI; Alzheimer's; ComBat; Cortical thickness; Harmonization; MRI; CORTICAL THICKNESS; MRI; RELIABILITY; SIGNATURE; TESTS; MILD; ADNI;
D O I
10.1016/j.neuroimage.2020.117129
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
While aggregation of neuroimaging datasets from multiple sites and scanners can yield increased statistical power, it also presents challenges due to systematic scanner effects. This unwanted technical variability can introduce noise and bias into estimation of biological variability of interest. We propose a method for harmonizing longitudinal multi-scanner imaging data based on ComBat, a method originally developed for genomics and later adapted to cross-sectional neuroimaging data. Using longitudinal cortical thickness measurements from 663 participants in the Alzheimer's Disease Neuroimaging Initiative (ADNI) study, we demonstrate the presence of additive and multiplicative scanner effects in various brain regions. We compare estimates of the association between diagnosis and change in cortical thickness over time using three versions of the ADNI data: unharmonized data, data harmonized using cross-sectional ComBat, and data harmonized using longitudinal ComBat. In simulation studies, we show that longitudinal ComBat is more powerful for detecting longitudinal change than cross-sectional ComBat and controls the type I error rate better than unharmonized data with scanner included as a covariate. The proposed method would be useful for other types of longitudinal data requiring harmonization, such as genomic data, or neuroimaging studies of neurodevelopment, psychiatric disorders, or other neurological diseases.
引用
收藏
页数:13
相关论文
共 31 条
[1]   The cortical signature of prodromal AD Regional thinning predicts mild AD dementia [J].
Bakkour, Akram ;
Morris, John C. ;
Dickerson, Bradford C. .
NEUROLOGY, 2009, 72 (12) :1048-1055
[2]   Fitting Linear Mixed-Effects Models Using lme4 [J].
Bates, Douglas ;
Maechler, Martin ;
Bolker, Benjamin M. ;
Walker, Steven C. .
JOURNAL OF STATISTICAL SOFTWARE, 2015, 67 (01) :1-48
[3]   A COMPARATIVE-STUDY OF TESTS FOR HOMOGENEITY OF VARIANCES, WITH APPLICATIONS TO THE OUTER CONTINENTAL-SHELF BIDDING DATA [J].
CONOVER, WJ ;
JOHNSON, ME ;
JOHNSON, MM .
TECHNOMETRICS, 1981, 23 (04) :351-361
[4]   DeepHarmony: A deep learning approach to contrast harmonization across scanner changes [J].
Dewey, Blake E. ;
Zhao, Can ;
Reinhold, Jacob C. ;
Carass, Aaron ;
Fitzgerald, Kathryn C. ;
Sotirchos, Elias S. ;
Saidha, Shiv ;
Oh, Jiwon ;
Pham, Dzung L. ;
Calabresi, Peter A. ;
van Zijl, Peter C. M. ;
Prince, Jerry L. .
MAGNETIC RESONANCE IMAGING, 2019, 64 :160-170
[5]   The Cortical Signature of Alzheimer's Disease: Regionally Specific Cortical Thinning Relates to Symptom Severity in Very Mild to Mild AD Dementia and is Detectable in Asymptomatic Amyloid-Positive Individuals [J].
Dickerson, Bradford C. ;
Bakkour, Akram ;
Salat, David H. ;
Feczko, Eric ;
Pacheco, Jenni ;
Greve, Douglas N. ;
Grodstein, Fran ;
Wright, Christopher I. ;
Blacker, Deborah ;
Rosas, H. Diana ;
Sperling, Reisa A. ;
Atri, Alireza ;
Growdon, John H. ;
Hyman, Bradley T. ;
Morris, John C. ;
Fischl, Bruce ;
Buckner, Randy L. .
CEREBRAL CORTEX, 2009, 19 (03) :497-510
[6]   Longitudinal changes in medial temporal cortical thickness in normal subjects with the APOE-4 polymorphism [J].
Donix, Markus ;
Burggren, Alison C. ;
Suthana, Nanthia A. ;
Siddarth, Prabha ;
Ekstrom, Arne D. ;
Krupa, Allison K. ;
Jones, Michael ;
Rao, Anup ;
Martin-Harris, Laurel ;
Ercoli, Linda M. ;
Miller, Karen J. ;
Small, Gary W. ;
Bookheimer, Susan Y. .
NEUROIMAGE, 2010, 53 (01) :37-43
[7]   Longitudinally and inter-site consistent multi-atlas based parcellation of brain anatomy using harmonized atlases [J].
Erus, Guray ;
Doshi, Jimit ;
An, Yang ;
Verganelakis, Dimitris ;
Resnick, Susan M. ;
Davatzikos, Christos .
NEUROIMAGE, 2018, 166 :71-78
[8]   Harmonization of cortical thickness measurements across scanners and sites [J].
Fortin, Jean-Philippe ;
Cullen, Nicholas ;
Sheline, Yvette I. ;
Taylor, Warren D. ;
Aselcioglu, Irem ;
Cook, Philip A. ;
Adams, Phil ;
Cooper, Crystal ;
Fava, Maurizio ;
McGrath, Patrick J. ;
McInnis, Melvin ;
Phillips, Mary L. ;
Trivedi, Madhukar H. ;
Weissman, Myrna M. ;
Shinohara, Russell T. .
NEUROIMAGE, 2018, 167 :104-120
[9]   Harmonization of multi-site diffusion tensor imaging data [J].
Fortin, Jean-Philippe ;
Parker, Drew ;
Tunc, Birkan ;
Watanabe, Takanori ;
Elliott, Mark A. ;
Ruparel, Kosha ;
Roalf, David R. ;
Satterthwaite, Theodore D. ;
Gur, Ruben C. ;
Gur, Raquel E. ;
Schultz, Robert T. ;
Verma, Ragini ;
Shinohara, Russell T. .
NEUROIMAGE, 2017, 161 :149-170
[10]   Measurement of MRI scanner performance with the ADNI phantom [J].
Gunter, Jeffrey L. ;
Bernstein, Matt A. ;
Borowski, Brett J. ;
Ward, Chadwick P. ;
Britson, Paula J. ;
Felmlee, Joel P. ;
Schuff, Norbert ;
Weiner, Michael ;
Jack, Clifford R. .
MEDICAL PHYSICS, 2009, 36 (06) :2193-2205