S-closed conformal transformations in Finsler geometry

被引:7
作者
Shen, Bin [1 ]
机构
[1] Southeast Univ, Sch Math, Nanjing 211189, Jiangsu, Peoples R China
关键词
Conformal; S-curvature; BERWALD; CONNECTIONS; MANIFOLDS; (ALPHA;
D O I
10.1016/j.difgeo.2018.02.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study S-closed conformal transformations, i.e., conformal transformations preserving the S-curvature invariant. Using the maximum principle, we prove that such transformation must be a homothety unless the Finsler manifold is Riemannian. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:254 / 263
页数:10
相关论文
共 24 条
[1]  
Bao D., 2000, Graduate Texts in Mathematics, V200
[2]  
Báscó S, 2007, PUBL MATH-DEBRECEN, V70, P221
[3]   Circle-preserving transformations in Finsler spaces [J].
Bidabad, Behroz ;
Shen, Zhongmin .
PUBLICATIONES MATHEMATICAE-DEBRECEN, 2012, 81 (3-4) :435-445
[4]  
Chen G. Z., 2015, ACTA MATH SIN ENGL S, V31, P879
[5]   On conformally flat (α, β)-metrics with constant flag curvature [J].
Chen, Guangzu ;
He, Qun ;
Shen, Zhongmin .
PUBLICATIONES MATHEMATICAE-DEBRECEN, 2015, 86 (3-4) :387-400
[6]   On conformal transformations between two (α, β)-metrics [J].
Chen, Guangzu ;
Cheng, Xinyue ;
Zou, Yangyang .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2013, 31 (02) :300-307
[7]   AN IMPORTANT CLASS OF CONFORMALLY FLAT WEAK EINSTEIN FINSLER METRICS [J].
Chen, Guangzu ;
Cheng, Xinyue .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2013, 24 (01)
[8]  
Feng HT, 2013, COMMUN ANAL GEOM, V21, P607
[9]   CONCIRCULAR TRANSFORMATIONS OF RIEMANNIAN-MANIFOLDS [J].
FERRAND, J .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 1985, 10 (01) :163-171
[10]  
Hashiguchi M., 1976, J. Math. Kyoto Univ, V16, P25