FUNCTIONAL CONNECTIVITY EIGENNETWORKS REVEAL DIFFERENT BRAIN DYNAMICS IN MULTIPLE SCLEROSIS PATIENTS

被引:0
作者
Leonardi, Nora [1 ]
Richiardi, Jonas [1 ]
Van De Ville, Dimitri [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Med Image Proc Lab, Lausanne, Switzerland
来源
2013 IEEE 10TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI) | 2013年
关键词
fMRI; dynamic functional connectivity; complex networks; matrix decomposition; multiple sclerosis; MRI;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Resting state functional connectivity is defined as correlations in brain activity measured by functional magnetic resonance imaging without any stimulation paradigm. Such connectivity is dynamic, even over the course of minutes, and the development of tools for its analysis is an important challenge in neuroscience. We propose a novel data-driven technique to extract connectivity patterns from dynamic whole-brain networks of multiple subjects. Our technique is based on singular value decomposition and decomposes a collection of networks into linearly independent "eigennetworks" and associated time courses. To deal with the temporal redundancy of networks, we propose a novel subsampling method based on the standard deviation of the connectivity strength. We apply the proposed technique to dynamic resting-state networks of healthy subjects and multiple sclerosis patients, and show its potential to detect aberrant connectivity patterns in patients.
引用
收藏
页码:528 / 531
页数:4
相关论文
共 14 条
  • [1] Allen EA, 2012, CEREBRAL CORTEX
  • [2] FUNCTIONAL CONNECTIVITY IN THE MOTOR CORTEX OF RESTING HUMAN BRAIN USING ECHO-PLANAR MRI
    BISWAL, B
    YETKIN, FZ
    HAUGHTON, VM
    HYDE, JS
    [J]. MAGNETIC RESONANCE IN MEDICINE, 1995, 34 (04) : 537 - 541
  • [3] Chang C, 2010, FILM COMMENT, V46, P81
  • [4] Filippi M., 2012, J NEUROL
  • [5] Periodic changes in fMRI connectivity
    Handwerker, Daniel A.
    Roopchansingh, Vinai
    Gonzalez-Castillo, Javier
    Bandettini, Peter A.
    [J]. NEUROIMAGE, 2012, 63 (03) : 1712 - 1719
  • [6] Hutchison R.M., 2012, HUM BRAIN MAPP, DOI DOI 10.1016/j.neuroimage.2012.12.007
  • [7] A Sliding Time-Window ICA Reveals Spatial Variability of the Default Mode Network in Time
    Kiviniemi, Vesa
    Vire, Tapani
    Remes, Jukka
    Abou Elseoud, Ahmed
    Starck, Tuomo
    Tervonen, Osmo
    Nikkinen, Juha
    [J]. BRAIN CONNECTIVITY, 2011, 1 (04) : 339 - 347
  • [8] Nonparametric permutation tests for functional neuroimaging: A primer with examples
    Nichols, TE
    Holmes, AP
    [J]. HUMAN BRAIN MAPPING, 2002, 15 (01) : 1 - 25
  • [9] SEGMENTATION OF BRAIN ELECTRICAL-ACTIVITY INTO MICROSTATES - MODEL ESTIMATION AND VALIDATION
    PASCUALMARQUI, RD
    MICHEL, CM
    LEHMANN, D
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1995, 42 (07) : 658 - 665
  • [10] Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion
    Power, Jonathan D.
    Barnes, Kelly A.
    Snyder, Abraham Z.
    Schlaggar, Bradley L.
    Petersen, Steven E.
    [J]. NEUROIMAGE, 2012, 59 (03) : 2142 - 2154