Probing deformation mechanisms of gradient nanostructured CrCoNi medium entropy alloy

被引:37
作者
Li, Jia [1 ]
Li, Li [1 ]
Jiang, Chao [1 ]
Fang, Qihong [1 ]
Liu, Feng [2 ]
Liu, Yong [2 ]
Liaw, Peter K. [3 ]
机构
[1] Hunan Univ, State Key Lab Adv Design & Mfg Vehicle Body, Changsha 410082, Peoples R China
[2] Cent South Univ, State Key Lab Powder Met, Changsha 410083, Peoples R China
[3] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA
来源
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY | 2020年 / 57卷
基金
美国国家科学基金会;
关键词
Medium entropy alloy; Gradient nanograined structure; Atomic simulation; Strengthening; Deformation; 9R phase; Deformation twinning; Phase transformation; STRENGTH-DUCTILITY SYNERGY; BEHAVIOR; TRANSFORMATION; PLASTICITY; EVOLUTION; PHASE;
D O I
10.1016/j.jmst.2020.03.064
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The gradient nanostructured medium entropy alloys (MEAs) exhibit a good yielding strength and great plasticity. Here, the mechanical properties, microstructure, and strain gradient in the gradient nanostructured MEA CrCoNi are studied by atomic simulations. The strong gradient stress and strain always occur in the deformed gradient nanograined MEA CrCoNi. The origin of improving strength is attributed to the formation of the 9R phase, deformation twinning, as well as the fcc to hcp phase transformation, which prevent strain localization. A microstructure -based predictive model reveals that the lattice distortion dependent solid-solution strengthening and grain-boundary strengthening dominate the yield strength, and the dislocation strengthening governs the strain hardening. The present result provides a fundamental understanding of the gradient nanograined structure and plastic deformation in the gradient nanograined MEA, which gives insights for the design of MEAs with higher strengths. (C) 2020 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.
引用
收藏
页码:85 / 91
页数:7
相关论文
共 54 条
[1]   Enhancing the plasticity of metallic glasses: Shear band formation, nanocomposites and nanoglasses investigated by molecular dynamics simulations [J].
Albe, Karsten ;
Ritter, Yvonne ;
Sopu, Daniel .
MECHANICS OF MATERIALS, 2013, 67 :94-103
[2]   On the elastic-viscoplastic behavior of nanocrystalline materials [J].
Capolungo, L. ;
Cherkaoui, M. ;
Qu, J. .
INTERNATIONAL JOURNAL OF PLASTICITY, 2007, 23 (04) :561-591
[3]   Homogenization method for strength and inelastic behavior of nanocrystalline materials [J].
Capolungo, L ;
Jochum, C ;
Cherkaoui, M ;
Qu, J .
INTERNATIONAL JOURNAL OF PLASTICITY, 2005, 21 (01) :67-82
[4]   Strength-ductility synergy of Al0.1CoCrFeNi high-entropy alloys with gradient hierarchical structures [J].
Chen, G. ;
Qiao, J. W. ;
Jiao, Z. M. ;
Zhao, D. ;
Zhang, T. W. ;
Ma, S. G. ;
Wang, Z. H. .
SCRIPTA MATERIALIA, 2019, 167 :95-100
[5]   Hall-Petch and inverse Hall-Petch relations in high-entropy CoNiFeAlxCu1-x alloys [J].
Chen, Shuai ;
Aitken, Zachary H. ;
Wu, Zhaoxuan ;
Yu, Zhigen ;
Banerjee, Rajarshi ;
Zhang, Yong-Wei .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2020, 773
[6]  
Clyne T.W., 1995, An Introduction to Metal Matrix Composites
[7]  
Courtney T.H., 2005, Mechanical Behavior of Materials
[8]   Toward a quantitative understanding of mechanical behavior of nanocrystalline metals [J].
Dao, M. ;
Lu, L. ;
Asaro, R. J. ;
De Hosson, J. T. M. ;
Ma, E. .
ACTA MATERIALIA, 2007, 55 (12) :4041-4065
[9]   VEGARD LAW [J].
DENTON, AR ;
ASHCROFT, NW .
PHYSICAL REVIEW A, 1991, 43 (06) :3161-3164
[10]   Fundamental deformation behavior in high-entropy alloys: An overview [J].
Diao, H. Y. ;
Feng, R. ;
Dahmen, K. A. ;
Liaw, P. K. .
CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2017, 21 (05) :252-266