Rank invariant tests for interval censored data under the grouped continuous model

被引:45
作者
Fay, MP
机构
[1] Div. of Cancer Prev. and Control, Biometry Branch, National Cancer Institute, Bethesda, MD 20892-7354
关键词
coarsened at random; grouped data; ordered categorical data; weighted log-rank;
D O I
10.2307/2533044
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper creates rank invariant score tests for grouped or interval censored data. This generalizes Finkelstein (1986, Biometrics 42, 845-854), who derived score tests for interval censored data assuming proportional hazards. We frame the problem as a linear rank test of a shift in location with a known error distribution. We discuss adjustments to the test that may be required when the number of observation times is large. We offer a graphical test of the assumption of the location shift model and discuss an alternative interpretation of the test using the logistic error when the location shift assumption does not hold.
引用
收藏
页码:811 / 822
页数:12
相关论文
共 27 条
[1]  
Andersen PK., 2012, Statistical models based on counting processes
[2]  
[Anonymous], 1967, THEORY RANK TESTS
[3]  
Bennett S, 1983, Stat Med, V2, P273, DOI 10.1002/sim.4780020223
[4]  
Cox D.R., 1974, THEORETICAL STAT
[5]  
COX DR, 1975, BIOMETRIKA, V62, P269, DOI 10.1093/biomet/62.2.269
[6]   A PROPORTIONAL HAZARDS MODEL FOR INTERVAL-CENSORED FAILURE TIME DATA [J].
FINKELSTEIN, DM .
BIOMETRICS, 1986, 42 (04) :845-854
[7]   A SEMIPARAMETRIC MODEL FOR REGRESSION-ANALYSIS OF INTERVAL-CENSORED FAILURE TIME DATA [J].
FINKELSTEIN, DM ;
WOLFE, RA .
BIOMETRICS, 1985, 41 (04) :933-945
[8]   A PROPORTIONAL HAZARDS MODEL FOR TRUNCATED AIDS DATA [J].
FINKELSTEIN, DM ;
MOORE, DF ;
SCHOENFELD, DA .
BIOMETRICS, 1993, 49 (03) :731-740
[9]  
GENTLEMAN R, 1994, BIOMETRIKA, V81, P618
[10]  
GROENEBOOM P, 1992, INFORMATION BOUNDS N