Composition and inner structure of the third layer in the oceanic crust in the subequatorial segment of the Mid-Atlantic Ridge (5A°-7A° N)

被引:0
作者
Skolotnev, S. G. [1 ]
Eskin, A. E. [1 ]
机构
[1] Russian Acad Sci, Geol Inst GIN, Moscow 109017, Russia
基金
俄罗斯基础研究基金会;
关键词
troctolite; gabbroid; diorite; plagiogranite; Mid-Atlantic Ridge; rift valley; nontransform offsets; magmatic chamber; melt; fluid; tectonic detachments; LEONE FRACTURE-ZONE; SIERRA-LEONE; HYDROTHERMAL SYSTEMS; EQUATORIAL ATLANTIC; MIDOCEAN RIDGES; MANTLE ROCKS; CREST ZONE; SEA-FLOOR; BENEATH; PERIDOTITE;
D O I
10.1134/S0016702913080053
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The paper presents data on the major-component, trace-element, and mineralogical composition of plutonic rocks, and the composition of their minerals, from the Sierra Leone region in the crest zone of the Mid-Atlantic Ridge between the Strakhov and Bogdanov fracture zones. According to their relations with seafloor structures, the rock associations are subdivided into those of rift valleys and nontransform offset zones. The troctolites and olivine gabbro composing the rift association were produced early in the fractionation course of oceanic tholeiite melt in unstationary and relatively small magmatic chambers. Most rocks beneath the nontransform offset zones crystallized during the long-lasting fractionation of the melt in large chambers hosted in serpentinized peridotites. This part consists of various cumulates, ranging from troctolites to gabbroids. Where deep tectonic detachments entered partly consolidated portions of the chambers, the melt interacted with the wall rocks. Fluid that was generated via the dehydration of serpentine and concentrated hydrophile elements, locally modified the composition of the melt and resulted in amphibole-bearing rocks. Under stress, the intercumulus melts were squeezed into tectonically weakened zones, mixed there, and also interacted with the wall rocks. These mix melts produced (with the participation of fractional crystallization) mineralized Fe-Ti gabbroids. Residual portions of the melts generated most of the diorites and plagiogranites. The high-Na diorites likely crystallized from acid melts that were derived via the partial melting of older gabbroids where aqueous fluids circulated; these fluids were generated by the deserpenitization of the host rocks in tectonized zones cutting through the chambers.
引用
收藏
页码:696 / 728
页数:33
相关论文
共 20 条
  • [1] Composition and inner structure of the third layer in the oceanic crust in the subequatorial segment of the Mid-Atlantic Ridge (5°–7° N)
    S. G. Skolotnev
    A. E. Eskin
    Geochemistry International, 2013, 51 : 696 - 728
  • [2] Oceanic Crust Formation in the Mid-Atlantic Ridge Segment between Azores and Icelandic Plumes: Results of Geological and Petrogeochemical Studies
    S. G. Skolotnev
    A. A. Peyve
    S. Yu. Sokolov
    S. A. Dokashenko
    V. N. Dobrolyubov
    O. I. Okina
    B. V. Ermolaev
    K. O. Dobrolyubova
    Geotectonics, 2023, 57 : 541 - 570
  • [3] Oceanic Crust Formation in the Mid-Atlantic Ridge Segment between Azores and Icelandic Plumes: Results of Geological and Petrogeochemical Studies
    Skolotnev, S. G.
    Peyve, A. A.
    Sokolov, S. Yu.
    Dokashenko, S. A.
    Dobrolyubov, V. N.
    Okina, O. I.
    Ermolaev, B. V.
    Dobrolyubova, K. O.
    GEOTECTONICS, 2023, 57 (05) : 541 - 570
  • [4] Accretion of the Oceanic Crust in the Mid-Atlantic Ridge (48°–51.5° N) during “Dry” Spreading
    A. A. Peyve
    S. Yu. Sokolov
    A. N. Ivanenko
    A. A. Razumovskiy
    I. S. Patina
    V. A. Bogolubskiy
    I. A. Veklich
    A. P. Denisova
    V. N. Dobrolyubov
    S. A. Dokashenko
    E. S. Ivanova
    S. A. Lapina
    I. A. Naumov
    N. S. Nikitin
    Z. F. Urazmuratova
    Doklady Earth Sciences, 2022, 507 : S349 - S356
  • [5] Accretion of the Oceanic Crust in the Mid-Atlantic Ridge (48°-51.5° N) during "Dry" Spreading
    Peyve, A. A.
    Sokolov, S. Yu.
    Ivanenko, A. N.
    Razumovskiy, A. A.
    Patina, I. S.
    Bogolubskiy, V. A.
    Veklich, I. A.
    Denisova, A. P.
    Dobrolyubov, V. N.
    Dokashenko, S. A.
    Ivanova, E. S.
    Lapina, S. A.
    Naumov, I. A.
    Nikitin, N. S.
    Urazmuratova, Z. F.
    DOKLADY EARTH SCIENCES, 2022, 507 (SUPPL 3) : S349 - S356
  • [6] Crustal structure of the propagating TAMMAR ridge segment on the Mid-Atlantic Ridge, 21.5°N
    Dannowski, A.
    Grevemeyer, I.
    Morgan, J. Phipps
    Ranero, C. R.
    Maia, M.
    Klein, G.
    GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS, 2011, 12
  • [7] Constraints on crustal structure of adjacent OCCs and segment boundaries at 13°N on the Mid-Atlantic Ridge
    Peirce, C.
    Reveley, G.
    Robinson, A. H.
    Funnell, M. J.
    Searle, R. C.
    Simao, N. M.
    MacLeod, C. J.
    Reston, T. J.
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2019, 217 (02) : 988 - 1010
  • [8] Fault structure and detailed evolution of a slow spreading ridge segment:: the Mid-Atlantic Ridge at 29°N
    Searle, RC
    Cowie, PA
    Mitchell, NC
    Allerton, S
    MacLeod, CJ
    Escartin, J
    Russell, SM
    Slootweg, PA
    Tanaka, T
    EARTH AND PLANETARY SCIENCE LETTERS, 1998, 154 (1-4) : 167 - 183
  • [9] Emplacement and High-Temperature Evolution of Gabbros of the 16.5°N Oceanic Core Complexes (Mid-Atlantic Ridge): Insights Into the Compositional Variability of the Lower Oceanic Crust
    Sanfilippo, A.
    Dick, H. J. B.
    Marschall, H. R.
    Lissenberg, C. J.
    Urann, B.
    GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS, 2019, 20 (01) : 46 - 66
  • [10] Oceanic seismotectonics from regional earthquake recordings: The 4-5°N mid-Atlantic ridge
    de Melo, Guilherme W. S.
    Mitchell, Neil C.
    Zahradnik, Jiri
    Dias, Fabio
    do Nascimento, Aderson F.
    TECTONOPHYSICS, 2021, 819