Positivity of solutions of elliptic equations with nonlocal terms

被引:24
作者
Allegretto, W
Barabanova, A
机构
[1] Department of Mathematics, University of Alberta, Edmonton
关键词
D O I
10.1017/S0308210500022952
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study a nonlocal problem for a second-order partial differential equation which depends on a parameter eta. We prove the existence of critical values 0 < <(eta)over bar> and 0 > <(eta)under bar> such that for all <(eta)under bar> less than or equal to eta less than or equal to <(eta)over bar> and for all non-negative right-hand sides, our problem has nonnegative solutions. We obtain a formula for eta(0), the maximal possible value of <(eta)over bar>, and find the exact value of <eta(>)0 for spherical Omega. We also study the corresponding eigenvalue problem. At the end of the paper, we consider the application of our results to the nonlinear system describing the distribution of temperature and potential in a microsensor.
引用
收藏
页码:643 / 663
页数:21
相关论文
共 21 条
[1]   NUMERICAL MODELING OF A MICROMACHINED THERMAL-CONDUCTIVITY GAS-PRESSURE SENSOR [J].
ALLEGRETTO, W ;
SHEN, B ;
HASWELL, P ;
LAI, ZS ;
ROBINSON, AM .
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 1994, 13 (10) :1247-1256
[2]  
ALLEGRETTO W, 1995, EUR J APPL MATH, V6, P83
[3]  
ALLEGRETTO W, 1991, SIAM J MATH ANAL, V22, P1491
[4]  
ALLEGRETTO W, 1995, APPL ANAL, V59, P27
[5]  
BEI H, SEMILINEAR PARABOLIC
[6]  
Bobisud L. E., 1994, Applicable Analysis, V52, P177
[7]  
CATCHPOLE EA, 1972, P ROY SOC EDINB A, V72, P39
[8]  
CHIPOT M, 1992, RAIRO-MATH MODEL NUM, V26, P447
[9]   A BOUND FOR THE TEMPERATURE IN THE THERMISTOR PROBLEM [J].
CIMATTI, G .
IMA JOURNAL OF APPLIED MATHEMATICS, 1988, 40 (01) :15-22
[10]  
CIMATTI G, 1988, ANN MATH PURA APPL 4, V151, P227