Improved bounds for ternary linear codes of dimension

被引:13
作者
Gulliver, TA
Ostergard, PRJ
机构
[1] CARLETON UNIV,DEPT SYST & COMP ENGN,OTTAWA,ON K1S 5B6,CANADA
[2] EINDHOVEN UNIV TECHNOL,DEPT MATH & COMP SCI,NL-5600 MB EINDHOVEN,NETHERLANDS
关键词
quasi-cyclic codes; tabu search; ternary linear codes;
D O I
10.1109/18.605613
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this correspondence, new codes of dimension 7 are presented which give improved bounds on the maximum possible minimum distance of ternary linear codes. These codes belong to the class of quasi-cyclic (QC) codes, and have been constructed using a stochastic optimization algorithm, tabu search. Thirty-two codes are given which improve or establish the current bounds for ternary codes, In addition, a table of upper and lower bounds for d(3)(n, 7) is presented for n less than or equal to 240.
引用
收藏
页码:1377 / 1381
页数:5
相关论文
共 16 条
[1]  
BOUKLIEV I, 1995, P INT WORKSH OPT COD
[2]  
BROUWER AE, LINEAR CODE BOUND SE
[3]  
Glover F., 1990, ORSA Journal on Computing, V2, P4, DOI [10.1287/ijoc.1.3.190, 10.1287/ijoc.2.1.4]
[4]  
Gulliver T. A., 1996, Designs, Codes and Cryptography, V7, P223, DOI 10.1007/BF00124513
[5]  
GULLIVER TA, 1995, ARS COMBINATORIA, V40, P97
[6]   SOME BEST RATE 1/P AND RATE (P-1)/P SYSTEMATIC QUASI-CYCLIC CODES OVER GF(3) AND GF(4) [J].
GULLIVER, TA ;
BHARGAVA, VK .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1992, 38 (04) :1369-1374
[7]   NEW OPTIMAL TERNARY LINEAR CODES [J].
GULLIVER, TA .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1995, 41 (04) :1182-1185
[8]  
HAMADA N, 1996, MATH JPN, V43, P577
[9]  
HILL R, 1992, JUN P INT WORKSH ALG, P92
[10]  
HONKALA IS, IN PRESS LOCAL SEARC