A Multicomplex Riemann Zeta Function

被引:3
作者
Reid, Frederick Lyall [1 ]
Van Gorder, Robert A. [1 ]
机构
[1] Univ Cent Florida, Dept Math, Orlando, FL 32816 USA
关键词
Multicomplex number system; Multicomplex analysis; Riemann zeta function; BICOMPLEX; SPACES;
D O I
10.1007/s00006-012-0369-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
After reviewing properties of analytic functions on the multicomplex number space (a commutative generalization of the bicomplex numbers ), a multicomplex Riemann zeta function is defined through analytic continuation. Properties of this function are explored, and we are able to state a multicomplex equivalence to the Riemann hypothesis.
引用
收藏
页码:237 / 251
页数:15
相关论文
共 24 条
[1]   Harmonic morphisms and bicomplex manifolds [J].
Baird, Paul ;
Wood, John C. .
JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (01) :46-61
[2]  
Dominic R., 2004, TOKYO J MATH, V27, P357, DOI DOI 10.3836/tjm/1244208394
[3]   ON A GENERALIZED FATOU-JULIA THEOREM IN MULTICOMPLEX SPACES [J].
Garant-Pelletier, V. ;
Rochon, D. .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2009, 17 (03) :241-255
[4]  
GODEMENT R, 1958, FONCTIONS ALGEBRES S
[5]  
Goyal R., 2007, TOKYO J MATH, V30, P523, DOI DOI 10.3836/TJM/1202136693
[6]  
Goyal SP., 2006, S E ASIAN J MATH MAT, V4, P59
[7]  
Javtokas A., 2006, SIAULIAI MATH SEMINA, V1, P23
[8]   Analytic functions of hypercomplex variables [J].
Ketchum, P. W. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1928, 30 (1-4) :641-667
[9]   Using Multicomplex Variables for Automatic Computation of High-Order Derivatives [J].
Lantoine, Gregory ;
Russell, Ryan P. ;
Dargent, Thierry .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2012, 38 (03)
[10]   The bicomplex quantum harmonic oscillator [J].
Lavoie, R. Gervais ;
Marchildon, L. ;
Rochon, D. .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 2010, 125 (10) :1173-1192