Polynomial configurations in difference sets

被引:13
作者
Lyall, Neil [1 ]
Magyar, Akos [1 ]
机构
[1] Univ Georgia, Dept Math, Boyd Grad Studies Res Ctr, Athens, GA 30602 USA
关键词
Difference sets; Sarkozy's theorem; Polynomial configurations; NO ARITHMETIC PROGRESSIONS; INTEGER SETS; THEOREM;
D O I
10.1016/j.jnt.2008.05.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a quantitative result on the existence of linearly independent polynomial configurations in the difference set of sparse subsets of the integers. This result is achieved by first establishing a higher dimensional analogue of a theorem of Sarkozy and then applying a simple lifting argument. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:439 / 450
页数:12
相关论文
共 16 条
[1]   DIFFERENCE SETS WITHOUT KAPPA-TH POWERS [J].
BALOG, A ;
PELIKAN, J ;
PINTZ, J ;
SZEMEREDI, E .
ACTA MATHEMATICA HUNGARICA, 1994, 65 (02) :165-187
[2]   Polynomial extensions of van der Waerden's and Szemeredi's theorems [J].
Bergelson, V ;
Leibman, A .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 9 (03) :725-753
[3]   ERGODIC BEHAVIOR OF DIAGONAL MEASURES AND A THEOREM OF SZEMEREDI ON ARITHMETIC PROGRESSIONS [J].
FURSTENBERG, H .
JOURNAL D ANALYSE MATHEMATIQUE, 1977, 31 :204-256
[4]   A new proof of Szemeredi's theorem [J].
Gowers, WT .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2001, 11 (03) :465-588
[5]   On arithmetic structures in dense sets of integers [J].
Green, B .
DUKE MATHEMATICAL JOURNAL, 2002, 114 (02) :215-238
[6]  
HEATHBROWN DR, 1987, J LOND MATH SOC, V35, P385
[7]   Intersective sets given by a polynomial [J].
Lucier, Jason .
ACTA ARITHMETICA, 2006, 123 (01) :57-95
[8]  
Montgomery H, 1994, CBMS REGIONAL C SERI
[9]  
PINTZ J, 1988, J LOND MATH SOC, V37, P219
[10]  
Ruzsa I., 1984, PERIOD MATH HUNG, V15, P205, DOI [10.1007/BF02454169, DOI 10.1007/BF02454169]