ON SOME OPTIMAL BAYESIAN NONPARAMETRIC RULES FOR ESTIMATING DISTRIBUTION FUNCTIONS

被引:4
|
作者
Ruggeri, Fabrizio [1 ]
机构
[1] CNR IMATI, I-20133 Milan, Italy
关键词
Bayesian analysis; Dirichlet process; -minimax; Posterior regret; C11;
D O I
10.1080/07474938.2013.807183
中图分类号
F [经济];
学科分类号
02 ;
摘要
In this paper, we present a novel approach to estimating distribution functions, which combines ideas from Bayesian nonparametric inference, decision theory and robustness. Given a sample from a Dirichlet process on the space (?, A), with parameter in a class of measures, the sampling distribution function is estimated according to some optimality criteria (mainly minimax and regret), when a quadratic loss function is assumed. Estimates are then compared in two examples: one with simulated data and one with gas escapes data in a city network.
引用
收藏
页码:289 / 304
页数:16
相关论文
共 23 条
  • [21] On the use of distribution-adaptive likelihood functions: Generalized and universal likelihood functions, scoring rules and multi-criteria ranking
    Vrugt, Jasper A.
    de Oliveira, Debora Y.
    Schoups, Gerrit
    Diks, Cees G. H.
    JOURNAL OF HYDROLOGY, 2022, 615
  • [22] Estimating the Extent and Distribution of New-Onset Adult Asthma in British Columbia Using Frequentist and Bayesian Approaches
    Beach, Jeremy
    Burstyn, Igor
    Cherry, Nicola
    ANNALS OF OCCUPATIONAL HYGIENE, 2012, 56 (06): : 719 - 727
  • [23] Comparison of loss functions for estimating the scale parameter of log-normal distribution using non-informative priors
    Khan, Akbar Ali
    Aslam, Muhammad
    Hussain, Zawar
    Tahir, Muhammad
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2016, 45 (06): : 1831 - 1845