Carbon nanofiber-RuO2-poly(benzimidazole) ternary hybrids for improved supercapacitor performance

被引:22
作者
Balan, Beena K. [1 ]
Chaudhari, Harshal D. [2 ]
Kharul, Ulhas K. [2 ]
Kurungot, Sreekumar [1 ]
机构
[1] Natl Chem Lab, Phys & Mat Chem Div, Pune 411008, Maharashtra, India
[2] Natl Chem Lab, Polymer Sci & Engn, Pune 411008, Maharashtra, India
关键词
HYDROUS RUTHENIUM OXIDE; ENERGY-STORAGE; ELECTROCHEMICAL CAPACITORS; ELECTRODES; NANOFIBERS; NANOTUBES; NANOPARTICLES; COMPOSITE; GRAPHENE; DESIGN;
D O I
10.1039/c2ra22776b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Carbon nanofiber-RuO2-poly(benzimidazole) ternary hybrid electrode material which integrates dual wall decoration and interfacial area tuning for supercapacitor applications has been devised based on a simple approach. This is achieved by decorating RuO2 nanoparticles of size ca. 2-3 nm along the inner and outer walls of a hollow carbon nanofiber (CNF) support (F-20RuO(2)). In the next step, a proton conducting polymer, phosphoric acid doped polybenzimidazole (PBI-BuI), interface is created along the inner and outer surfaces of this material. A 103% increase in the specific capacitance is obtained for RuO2-PBI hybrid material as compared to that of F-20RuO(2) at the optimum level of the polymer wrapping. Apart from the high specific capacitance, the RuO2-PBI hybrid materials exhibit enhanced rate capability and excellent electrochemical stability of 98% retention in the capacitance. Such a remarkably high activity can be primarily attributed to the efficient dispersion of active sites achieved by properly utilizing inner and outer surfaces of CNF. Apart from this, the facile routes for ion transport created as a result of PBI incorporation coupled with excellent interfacial contact between the RuO2 and the electrolyte resulting in the improved utilization of the active material also contribute to the improved activity. In addition to this, the synergistic effects of pseudocapacitive contribution from both the PBI-BuI and RuO2 also contribute to the redefined performance characteristics.
引用
收藏
页码:2428 / 2436
页数:9
相关论文
共 35 条
[1]   High aspect ratio nanoscale multifunctional materials derived from hollow carbon nanofiber by polymer insertion and metal decoration [J].
Balan, Beena K. ;
Kale, Vinayak S. ;
Aher, Pradnya P. ;
Shelke, Manjusha V. ;
Pillai, Vijayamohanan K. ;
Kurungot, Sreekumar .
CHEMICAL COMMUNICATIONS, 2010, 46 (30) :5590-5592
[2]   Carbon Nanofiber with Selectively Decorated Pt Both on Inner and Outer Walls as an Efficient Electrocatalyst for Fuel Cell Applications [J].
Balan, Beena K. ;
Unni, Sreekuttan M. ;
Kurungot, Sreekumar .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (40) :17572-17578
[3]  
Brezesinski T, 2010, NAT MATER, V9, P146, DOI [10.1038/NMAT2612, 10.1038/nmat2612]
[4]   Facile autoreduction of iron oxide/carbon nanotube encapsulates [J].
Chen, W ;
Pan, XL ;
Willinger, MG ;
Su, DS ;
Bao, XH .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (10) :3136-3137
[5]   Tuning of redox properties of iron and iron oxides via encapsulation within carbon nanotubes [J].
Chen, Wei ;
Pan, Xiulian ;
Bao, Xinhe .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (23) :7421-7426
[6]   Graphene and nanostructured MnO2 composite electrodes for supercapacitors [J].
Cheng, Qian ;
Tang, Jie ;
Ma, Jun ;
Zhang, Han ;
Shinya, Norio ;
Qin, Lu-Chang .
CARBON, 2011, 49 (09) :2917-2925
[7]   The role and utilization of pseudocapacitance for energy storage by supercapacitors [J].
Conway, BE ;
Birss, V ;
Wojtowicz, J .
JOURNAL OF POWER SOURCES, 1997, 66 (1-2) :1-14
[8]   Structural characterization of cup-stacked-type nanofibers with an entirely hollow core [J].
Endo, M ;
Kim, YA ;
Hayashi, T ;
Fukai, Y ;
Oshida, K ;
Terrones, M ;
Yanagisawa, T ;
Higaki, S ;
Dresselhaus, MS .
APPLIED PHYSICS LETTERS, 2002, 80 (07) :1267-1269
[9]   REVERSIBILITY AND GROWTH-BEHAVIOR OF SURFACE OXIDE-FILMS AT RUTHENIUM ELECTRODES [J].
HADZIJORDANOV, S ;
ANGERSTEINKOZLOWSKA, H ;
VUKOVIC, M ;
CONWAY, BE .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1978, 125 (09) :1471-1480
[10]   Design and Synthesis of Hierarchical MnO2 Nanospheres/Carbon Nanotubes/Conducting Polymer Ternary Composite for High Performance Electrochemical Electrodes [J].
Hou, Ye ;
Cheng, Yingwen ;
Hobson, Tyler ;
Liu, Jie .
NANO LETTERS, 2010, 10 (07) :2727-2733