Fabrication and temperature dependent magnetic properties of nickel nanowires embedded in alumina templates

被引:23
作者
Adeela, N. [1 ,2 ]
Maaz, K. [2 ]
Khan, U. [3 ]
Karim, S. [2 ]
Ahmad, M. [2 ]
Iqbal, M. [1 ]
Riaz, S. [4 ]
Han, X. F. [3 ]
Maqbool, M. [5 ]
机构
[1] Univ Punjab, Ctr High Energy Phys, Lahore 54560, Pakistan
[2] Phys Div PINSTECH, Nanomat Res Grp, Islamabad 45650, Pakistan
[3] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
[4] Univ Punjab, Ctr Excellence Solid State Phys, Lahore 54560, Pakistan
[5] Ball State Univ, Dept Phys & Astron, Muncie, IN 47306 USA
关键词
Nickel nanowires; Electrodeposition; Coercivity; Saturation magnetization; NM WIDE NANOWIRES; METALLIC NANOWIRES; ARRAYS; COERCIVITY; DEPOSITION; PARTICLES; REMANENCE; LENGTH;
D O I
10.1016/j.ceramint.2015.06.025
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Nickel nanowires (NWs) of 98 nm diameter and 17 micron length were fabricated by electrodeposition in anodic aluminum oxide (AAO) membranes. Structural analyses reveal that the NWs have face centered cubic (fcc) structure with preferred orientation along (111) plane. Low temperature magnetic measurements (10-300 K) show that coercivity (H-c) of nanowires increases with decreasing temperature following Kneller's law similar to the ferromagnetic nanoparticle system. In addition, the saturation magnetization follows the modified Bloch's law in the temperature range 50-300 K. However, at temperatures below 50 K there is an abrupt increase in net magnetization of the NVVs that has been attributed to the presence of paramagnetic impurities in the samples that are activated at low temperatures and at high fields. (C) 2015 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
引用
收藏
页码:12081 / 12086
页数:6
相关论文
共 28 条
[1]   Microwave signal emission in spin-torque vortex oscillators in metallic nanowires: Experimental measurements and micromagnetic numerical study [J].
Araujo, F. Abreu ;
Darques, M. ;
Zvezdin, K. A. ;
Khvalkovskiy, A. V. ;
Locatelli, N. ;
Bouzehouane, K. ;
Cros, V. ;
Piraux, L. .
PHYSICAL REVIEW B, 2012, 86 (06)
[2]  
Barret C.S., 1980, STRUCTURE METALS
[3]  
BEHRENS S, 2011, NANOSCALE, V3, P877, DOI DOI 10.1039/c0nr00634c
[4]   About the Quantum mechanics of Electrons in Crystal lattices. [J].
Bloch, Felix .
ZEITSCHRIFT FUR PHYSIK, 1929, 52 (7-8) :555-600
[5]   Microstructural effects on the magnetic and magneto-transport properties of electrodeposited Ni nanowire arrays [J].
Chen, Shu-Fang ;
Wei, Hao Han ;
Liu, Chuan-Pu ;
Hsu, C. Y. ;
Huang, J. C. A. .
NANOTECHNOLOGY, 2010, 21 (42)
[6]   Controlled crystallinity and crystallographic orientation of Cu nanowires fabricated in ion-track templates [J].
Duan, Jinglai ;
Liu, Jie ;
Mo, Dan ;
Yao, Huijun ;
Maaz, Khan ;
Chen, Yonghui ;
Sun, Youmei ;
Hou, Mingdong ;
Qu, Xiaohua ;
Zhang, Ling ;
Chen, Yanfeng .
NANOTECHNOLOGY, 2010, 21 (36)
[7]   Geometry dependence of coercivity in Ni nanowire arrays [J].
Escrig, J. ;
Lavin, R. ;
Palma, J. L. ;
Denardin, J. C. ;
Altbir, D. ;
Cortes, A. ;
Gomez, H. .
NANOTECHNOLOGY, 2008, 19 (07)
[8]   Magnetic crossover effect in Nickel nanowire arrays [J].
Ghaddar, A. ;
Gloaguen, F. ;
Gieraltowski, J. ;
Tannous, C. .
PHYSICA B-CONDENSED MATTER, 2011, 406 (10) :2046-2053
[9]   Angular dependence of the coercivity and remanence of ferromagnetic nanowire arrays [J].
Han, GC ;
Zong, BY ;
Luo, P ;
Wu, YH .
JOURNAL OF APPLIED PHYSICS, 2003, 93 (11) :9202-9207
[10]  
Han X.-F., 2009, ADV MATER, V21, P1