Almost sure convergence for stochastically biased random walks on trees

被引:21
作者
Faraud, Gabriel [1 ]
Hu, Yueyun [1 ]
Shi, Zhan [2 ]
机构
[1] Univ Paris 13, Dept Math, F-93430 Villetaneuse, France
[2] Univ Paris 06, Lab Probabilites, UMR 7599, F-75252 Paris 05, France
关键词
Biased random walk on a Galton-Watson tree; Branching random walk; Slow movement; Random walk in a random environment; TRANSIENT RANDOM-WALKS; RANDOM ENVIRONMENT; PERCOLATION; BEHAVIOR; THEOREM;
D O I
10.1007/s00440-011-0379-y
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We are interested in the biased random walk on a supercritical Galton-Watson tree in the sense of Lyons (Ann. Probab. 18:931-958, 1990) and Lyons, Pemantle and Peres (Probab. Theory Relat. Fields 106:249-264, 1996), and study a phenomenon of slow movement. In order to observe such a slow movement, the bias needs to be random; the resulting random walk is then a tree-valued random walk in random environment. We investigate the recurrent case, and prove, under suitable general integrability assumptions, that upon the system's non-extinction, the maximal displacement of the walk in the first n steps, divided by (log n)(3), converges almost surely to a known positive constant.
引用
收藏
页码:621 / 660
页数:40
相关论文
共 34 条
[1]   Transient random walks in random environment on a Galton-Watson tree [J].
Aidekon, Elie .
PROBABILITY THEORY AND RELATED FIELDS, 2008, 142 (3-4) :525-559
[2]   Large deviations for transient random walks in random environment on a Galton-Watson tree [J].
Aidekon, Elie .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2010, 46 (01) :159-189
[3]  
[Anonymous], 2002, HDB BROWNIAN MOTION, DOI DOI 10.1007/978-3-0348-8163-0
[4]  
[Anonymous], 1997, CLASSICAL MODERN BRA
[5]  
Arous G., 2009, STABLE LIMIT L UNPUB
[6]  
Ben Arous G., 2007, MATHPR07113686 ARXIV
[7]  
Biggins JD, 1997, ANN PROBAB, V25, P337
[8]   1ST-BIRTH AND LAST-BIRTH PROBLEMS FOR A MULTITYPE AGE-DEPENDENT BRANCHING-PROCESS [J].
BIGGINS, JD .
ADVANCES IN APPLIED PROBABILITY, 1976, 8 (03) :446-459
[9]   CHERNOFFS THEOREM IN BRANCHING RANDOM-WALK [J].
BIGGINS, JD .
JOURNAL OF APPLIED PROBABILITY, 1977, 14 (03) :630-636
[10]  
Billingsley Patrick, 1999, Convergence of probability measures, V2nd