Silicon-Based Hybrid Energy Cell for Self-Powered Electrodegradation and Personal Electronics

被引:132
|
作者
Yang, Ya [1 ]
Zhang, Hulin [1 ]
Liu, Yan [1 ]
Lin, Zong-Hong [1 ]
Lee, Sangmin [1 ]
Lin, Ziyin [1 ]
Wong, Ching Ping [1 ]
Wang, Zhong Lin [1 ,2 ]
机构
[1] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
[2] Chinese Acad Sci, Beijing Inst Nanoenergy & Nanosyst, Beijing 100864, Peoples R China
关键词
hybrid energy cell; triboelectric nanogenerator; solar cells; rhodamine B; self-powered; electrodegradation; PHOTOCATALYTIC DEGRADATION; ELECTROCHEMICAL OXIDATION; RHODAMINE-B; NANOGENERATOR; CONVERSION; NANOWIRES;
D O I
10.1021/nn400361p
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Silicon (Si)-based solar cell Is by far the most established solar cell technology. The surface of a SI solar cell is usually covered by a layer of transparent material to protect the device from corrosion, contamination and mechanical damage. Here, we replaced this protection layer by a thin layer film of polydimethysiloxane nanowires. Based on this layer and using the conductive layer on the surface of the wavy Si, we have fabricated a triboelectric nanogenerator (TENG). The solar cell and the TENG form a hybrid energy cell for simultaneously harvesting solar and mechanical energies. The hybrid energy cell can be directly used for self-powered electrodegradation of rhodamine 13, where the degradation percentage is up to 98% in 10 min. Moreover, the produced energy can also be stored in the Li-ion batteries for driving some personal electronics such as a red laser diode and a commercial cell phone.
引用
收藏
页码:2808 / 2813
页数:6
相关论文
共 50 条
  • [21] Self-powered and self-sensing devices based on piezoelectric energy harvesting
    Chen, Gantong
    Zhu, Yue
    Huang, Dongmei
    Zhou, Shengxi
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2024, 67 (06) : 1631 - 1667
  • [22] A Novel Self-Powered Hybrid Rectifier for Piezoelectric Energy Harvesting
    Li, Xuewei
    Jiang, Hong
    Li, Bo
    Deng, Lixin
    Fan, Jiaming
    INTEGRATED FERROELECTRICS, 2024, 240 (01) : 121 - 139
  • [23] Self-powered energy conversion and energy storage system based on triboelectric nanogenerator
    Han, Yu
    Wang, Wenqiang
    Zou, Jingdian
    Li, Zhen
    Cao, Xia
    Xu, Shengming
    NANO ENERGY, 2020, 76
  • [24] Hybrid nanogenerator-based self-powered double-authentication microsystem for smart identification
    Wen, Dan-Liang
    Huang, Peng
    Qian, Heng-Yi
    Ba, Yan-Yuan
    Ren, Zhen-Yu
    Tu, Cheng
    Gong, Tian-Xun
    Huang, Wen
    Zhang, Xiao-Sheng
    NANO ENERGY, 2021, 86
  • [25] Self-powered silicon PIN photoelectric detection system based on triboelectric nanogenerator
    Wang, Jingxi
    Xia, Kequan
    Liu, Jiale
    Li, Tiesong
    Zhao, Xinyang
    Shu, Bin
    Li, Huan
    Guo, Jing
    Yu, Min
    Tang, Wei
    Zhu, Zhiyuan
    NANO ENERGY, 2020, 69
  • [26] A self-powered and self-sensing hybrid energy harvester for freight trains
    Zeng, Lei
    Zhao, Jie
    Tang, Hongjie
    Zhang, Zutao
    Wu, Xiaoping
    Luo, Dabing
    Li, Yingjie
    Liu, Weizhen
    Hao, Daning
    Fang, Zheng
    SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2024, 71
  • [27] A Self-Powered Multifunctional Bracelet for Pulse Monitoring and Personal Rescue
    Sun, Wei
    Xue, Jiangtao
    Tan, Puchuan
    Shi, Bojing
    Zou, Yang
    Li, Zhou
    BIOSENSORS-BASEL, 2023, 13 (05):
  • [28] Hybrid nanogenerators for low frequency vibration energy harvesting and self-powered wireless locating
    Yuan, Ying
    Zhang, Hulin
    Wang, Jie
    Xie, Yuhang
    Khan, Saeed Ahmed
    Jin, Long
    Yan, Zhuocheng
    Huang, Long
    Pan, Taisong
    Yang, Weiqing
    Lin, Yuan
    MATERIALS RESEARCH EXPRESS, 2018, 5 (01)
  • [29] Rational Design of Cellulosic Triboelectric Materials for Self-Powered Wearable Electronics
    Meng, Xiangjiang
    Cai, Chenchen
    Luo, Bin
    Liu, Tao
    Shao, Yuzheng
    Wang, Shuangfei
    Nie, Shuangxi
    NANO-MICRO LETTERS, 2023, 15 (01)
  • [30] A highly reliable contact-separation based triboelectric nanogenerator for scavenging bio-mechanical energy and self-powered electronics
    Venkateswaran Vivekananthan
    Woo Joong Kim
    Nagamalleswara Rao Alluri
    Yuvasree Purusothaman
    Gaurav Khandelwal
    Sang-Jae Kim
    Journal of Mechanical Science and Technology, 2021, 35 : 2131 - 2139