Structural Basis Unifying Diverse GTP Hydrolysis Mechanisms

被引:17
作者
Anand, Baskaran [1 ]
Majumdar, Soneya [1 ]
Prakash, Balaji [1 ]
机构
[1] Indian Inst Technol, Dept Biol Sci & Bioengn, Kanpur 208016, Uttar Pradesh, India
关键词
ELONGATION-FACTOR TU; CRYSTAL-STRUCTURE; CATALYTIC GLUTAMINE; ACTIVATING PROTEIN; CHEMICAL STEP; EF-TU; COMPLEX; REVEALS; BINDING; GTPASES;
D O I
10.1021/bi3014054
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Central to biological processes is the regulation rendered by GTPases. Until recently, the GTP hydrolysis mechanism, exemplified by Ras-family (and G-alpha) GTPases, was thought to be universal. This mechanism utilizes a conserved catalytic Gln supplied "in cis" from the GTPase and an arginine finger "in trans" from a GAP (GTPase activating protein) to stabilize the transition state. However, intriguingly different mechanisms are operative in structurally similar GTPases. MnmE and dynamin like cation-dependent GTPases lack the catalytic Gln and instead employ a Glu/Asp/Ser situated elsewhere and in place of the arginine finger use a K+ or Na+ ion. In contrast, Rab33 possesses the Gln but does not utilize it for catalysis; instead, the GAP supplies both a catalytic Gln and an arginine finger in trans. Deciphering the underlying principles that unify seemingly unrelated mechanisms is central to understanding how diverse mechanisms evolve. Here, we recognize that steric hindrance between active site residues is a criterion governing the mechanism employed by a given GTPase. The Arf-ArfGAP structure is testimony to this concept of spatial (in)compatibility of active site residues. This understanding allows us to predict an as yet unreported hydrolysis mechanism and clarifies unexplained observations about catalysis by Rab11 and the need for HAS-GTPases to employ a different mechanism. This understanding would be valuable for experiments in which abolishing GTP hydrolysis or generating constitutively active forms of a GTPase is important.
引用
收藏
页码:1122 / 1130
页数:9
相关论文
共 47 条
  • [1] Apweiler R, 2004, NUCLEIC ACIDS RES, V32, pD115, DOI [10.1093/nar/gkh131, 10.1093/nar/gkw1099]
  • [2] The InterPro database, an integrated documentation resource for protein families, domains and functional sites
    Apweiler, R
    Attwood, TK
    Bairoch, A
    Bateman, A
    Birney, E
    Biswas, M
    Bucher, P
    Cerutti, T
    Corpet, F
    Croning, MDR
    Durbin, R
    Falquet, L
    Fleischmann, W
    Gouzy, J
    Hermjakob, H
    Hulo, N
    Jonassen, I
    Kahn, D
    Kanapin, A
    Karavidopoulou, Y
    Lopez, R
    Marx, B
    Mulder, NJ
    Oinn, TM
    Pagni, M
    Servant, F
    Sigrist, CJA
    Zdobnov, EM
    [J]. NUCLEIC ACIDS RESEARCH, 2001, 29 (01) : 37 - 40
  • [3] The cation-dependent G-proteins: In a class of their own
    Ash, Miriam-Rose
    Maher, Megan J.
    Guss, J. Mitchell
    Jormakka, Mika
    [J]. FEBS LETTERS, 2012, 586 (16) : 2218 - 2224
  • [4] Structure of the Sec23/24-Sar1 pre-budding complex of the COPII vesicle coat
    Bi, XP
    Corpina, RA
    Goldberg, J
    [J]. NATURE, 2002, 419 (6904) : 271 - 277
  • [5] GEFs and GAPs: Critical elements in the control of small G proteins
    Bos, Johannes L.
    Rehmann, Holger
    Wittinghofer, Alfred
    [J]. CELL, 2007, 129 (05) : 865 - 877
  • [6] G domain dimerization controls dynamin's assembly-stimulated GTPase activity
    Chappie, Joshua S.
    Acharya, Sharmistha
    Leonard, Marilyn
    Schmid, Sandra L.
    Dyda, Fred
    [J]. NATURE, 2010, 465 (7297) : 435 - U54
  • [7] Atomic mutagenesis reveals A2660 of 23S ribosomal RNA as key to EF-G GTPase activation
    Clementi, Nina
    Chirkova, Anna
    Puffer, Barbara
    Micura, Ronald
    Polacek, Norbert
    [J]. NATURE CHEMICAL BIOLOGY, 2010, 6 (05) : 344 - 351
  • [8] Biopython']python: freely available Python']Python tools for computational molecular biology and bioinformatics
    Cock, Peter J. A.
    Antao, Tiago
    Chang, Jeffrey T.
    Chapman, Brad A.
    Cox, Cymon J.
    Dalke, Andrew
    Friedberg, Iddo
    Hamelryck, Thomas
    Kauff, Frank
    Wilczynski, Bartek
    de Hoon, Michiel J. L.
    [J]. BIOINFORMATICS, 2009, 25 (11) : 1422 - 1423
  • [9] WebLogo: A sequence logo generator
    Crooks, GE
    Hon, G
    Chandonia, JM
    Brenner, SE
    [J]. GENOME RESEARCH, 2004, 14 (06) : 1188 - 1190
  • [10] The GTPase-activating protein Rap1GAP uses a catalytic asparagine
    Daumke, O
    Weyand, M
    Chakrabarti, PP
    Vetter, IR
    Wittinghofer, A
    [J]. NATURE, 2004, 429 (6988) : 197 - 201