Interface heterogeneity of periodic multilayer mirrors investigated by X-ray fluorescence, scattering spectroscopy, and mathematical methods of statistics

被引:3
作者
Mazuritskiy, Mikhail, I [1 ]
Kozakov, Alexey T. [2 ]
Kumar, Niranjan [3 ]
Smertin, Ruslan M. [3 ]
Garakhin, Sergei A. [3 ]
Polkovnikov, Vladimir N. [3 ]
Chkhalo, Nikolay, I [3 ]
机构
[1] Southern Fed Univ, Fac Phys, Sorge Str 5, Rostov Na Donu 344090, Russia
[2] Southern Fed Univ, Res Inst Phys, 194 Stachki Ave, Rostov Na Donu 344090, Russia
[3] RAS, Inst Phys Microstruct, Afonino 603087, Nizhny Novgorod, Russia
关键词
Multilayer X-ray mirrors; X-ray optics; Micro -X-ray fluorescent analysis; X-ray photoelectron spectroscopy; Degree of surface homogeneity; OPTICS; INTERFERENCE; FABRICATION; REFLECTION;
D O I
10.1016/j.surfin.2022.102258
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Multilayer interference structures (X-ray mirrors) based on the alternating layers of Mo/Si and W/Si were investigated using laboratory X-ray micro-fluorescence analysis (micro-XFA) and statistical analysis. The physics of interaction processes of primary X-ray radiation scattered on the surface of multilayer periodic structures have been studied. Using the X-ray spectroscopy together with the mathematical methods of statistics made it possible to evaluate a degree of homogeneity and to compare the chemical compositions of different samples of the multilayer mirrors. A correlation between the statistical characteristics of bimodal frequency distribution and the reflectivity properties of X-ray mirrors for the scattered radiation has been revealed. The frequency distributions of mathematical statistics for experimentally collected intensities of the scattered Rh K alpha radiation indicate the depth heterogeneity of the studied samples. Used in this work approach gives a new strategy for testing to improve of efficiency of X-ray mirrors based on the multilayer nanoscale structures.
引用
收藏
页数:10
相关论文
共 48 条
[1]   Application of free-standing multilayer films as polarizers for X-ray radiation [J].
Andreev, SS ;
Bibishkin, MS ;
Chkhalo, NI ;
Lopatin, AY ;
Luchin, VI ;
Pestov, AE ;
Prokhorov, KA ;
Salaschchenko, NN .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2005, 543 (01) :340-345
[2]   Multilayer optics for XUV spectral region: technology fabrication and applications [J].
Andreev, SS ;
Akhsakhalyan, AD ;
Bibishkin, MA ;
Chkhalo, NI ;
Gaponov, SV ;
Gusev, SA ;
Kluenkov, EB ;
Prokhorov, KA ;
Salashchenko, NN ;
Schafers, F ;
Zuev, SY .
CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2003, 1 (01) :191-209
[3]  
[Anonymous], 2022, INTRO T TESTS
[4]  
[Anonymous], 2022, XRAY IMAGES PIXEL IN
[5]   TUNABLE COHERENT X-RAYS [J].
ATTWOOD, D ;
HALBACH, K ;
KIM, KJ .
SCIENCE, 1985, 228 (4705) :1265-1272
[6]   MULTILAYERS FOR X-RAY OPTICS [J].
BARBEE, TW .
OPTICAL ENGINEERING, 1986, 25 (08) :898-915
[7]   Precision imaging multilayer optics for soft X-rays and extreme ultraviolet bands [J].
Barysheva, M. M. ;
Pestov, A. E. ;
Salashchenko, N. N. ;
Toropov, M. N. ;
Chkhalo, N. I. .
PHYSICS-USPEKHI, 2012, 55 (07) :681-699
[8]   Multilayer Zr/Si filters for EUV lithography and for radiation source metrology [J].
Bibishkin, M. S. ;
Chkhalo, N. I. ;
Gusev, S. A. ;
Kluenkov, E. B. ;
Lopatin, A. Ya. ;
Luchin, V. I. ;
Pestov, A. E. ;
Salashchenko, N. N. ;
Shmaenok, L. A. ;
Tsybin, N. N. ;
Zuev, S. Yu. .
MICRO- AND NANOELECTRONICS 2007, 2008, 7025
[9]   NANOMETER SPATIAL-RESOLUTION ACHIEVED IN HARD X-RAY-IMAGING AND LAUE DIFFRACTION EXPERIMENTS [J].
BILDERBACK, DH ;
HOFFMAN, SA ;
THIEL, DJ .
SCIENCE, 1994, 263 (5144) :201-203
[10]  
Bruker corporation, 2022, 2D XRAY FLUOR MICR X