Characteristic imsets for learning Bayesian network structure

被引:23
|
作者
Hemmecke, Raymond [2 ]
Lindner, Silvia [2 ]
Studeny, Milan [1 ]
机构
[1] ASCR, Inst Informat Theory & Automat, Prague, Czech Republic
[2] Tech Univ Munich, Zentrum Math, Munich, Germany
关键词
Learning Bayesian network structure; Essential graph; Standard imset; Characteristic imset; LP relaxation of a polytope; MARKOV EQUIVALENCE;
D O I
10.1016/j.ijar.2012.04.001
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The motivation for the paper is the geometric approach to learning Bayesian network (BN) structure. The basic idea of our approach is to represent every BN structure by a certain uniquely determined vector so that usual scores for learning BN structure become affine functions of the vector representative. The original proposal from Studeny et al. (2010) [26] was to use a special vector having integers as components, called the standard imset, as the representative. In this paper we introduce a new unique vector representative, called the characteristic imset, obtained from the standard imset by an affine transformation. Characteristic imsets are (shown to be) zero-one vectors and have many elegant properties, suitable for intended application of linear/integer programming methods to learning BN structure. They are much closer to the graphical description; we describe a simple transition between the characteristic imset and the essential graph, known as a traditional unique graphical representative of the BN structure. In the end, we relate our proposal to other recent approaches which apply linear programming methods in probabilistic reasoning. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:1336 / 1349
页数:14
相关论文
共 50 条
  • [1] Parallel Bayesian Network Structure Learning
    Gao, Tian
    Wei, Dennis
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [2] A Method for Learning Bayesian Network Structure
    Li, Jingnan
    Zhang, Yingxia
    2014 SIXTH INTERNATIONAL CONFERENCE ON INTELLIGENT HUMAN-MACHINE SYSTEMS AND CYBERNETICS (IHMSC), VOL 2, 2014, : 222 - 225
  • [3] Restricted Bayesian network structure learning
    Lucas, PJF
    ADVANCES IN BAYESIAN NETWORKS, 2004, 146 : 217 - 234
  • [4] Study of Bayesian Network Structure Learning
    Xiong, Wei
    Cao, Yonghui
    Liu, Hui
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2013, 7 : 49 - 54
  • [5] A survey of Bayesian Network structure learning
    Kitson, Neville Kenneth
    Constantinou, Anthony C. C.
    Guo, Zhigao
    Liu, Yang
    Chobtham, Kiattikun
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (08) : 8721 - 8814
  • [6] Sequential Bayesian Network Structure Learning
    Ekanayake, Sachini Piyoni
    Zois, Daphney-Stavroula
    2022 56TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, 2022, : 76 - 80
  • [7] Bayesian learning of Markov network structure
    Jakulin, Aleks
    Rish, Irina
    MACHINE LEARNING: ECML 2006, PROCEEDINGS, 2006, 4212 : 198 - 209
  • [8] Distributed Bayesian Network Structure Learning
    Na, Yongchan
    Yang, Jihoon
    IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE 2010), 2010, : 1607 - 1611
  • [9] A survey of Bayesian Network structure learning
    Neville Kenneth Kitson
    Anthony C. Constantinou
    Zhigao Guo
    Yang Liu
    Kiattikun Chobtham
    Artificial Intelligence Review, 2023, 56 : 8721 - 8814
  • [10] Bayesian network structure ensemble learning
    Department of Computer Science, Beijing University of Posts and Telecommunications, Xitu Cheng Lu 10, Beijing
    100876, China
    不详
    100044, China
    Lect. Notes Comput. Sci., 2007, (454-465):