Extremal problems on saturation for the family of k-edge-connected graphs

被引:5
作者
Lei, Hui [1 ,2 ]
Suil, O. [3 ]
Shi, Yongtang [1 ,2 ]
West, Douglas B. [4 ,5 ]
Zhu, Xuding [4 ]
机构
[1] Nankai Univ, Ctr Combinator, Tianjin 300071, Peoples R China
[2] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
[3] State Univ New York, Dept Appl Math & Stat, Incheon 21985, South Korea
[4] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
[5] Univ Illinois, Urbana, IL 61801 USA
基金
中国国家自然科学基金;
关键词
Saturation number; Extremal number; k-edge-connected; Spectral radius;
D O I
10.1016/j.dam.2019.01.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let F be a family of graphs. A graph G is F-saturated if G contains no member of F as a subgraph but G+e contains some member of .F whenever e is an element of E((G) over bar) The saturation number and extremal number of .F, denoted sat(n, F) and ex(n, .F) respectively, are the minimum and maximum numbers of edges among n-vertex .F-saturated graphs. For k is an element of N, let F-k and F-k' be the families of k-connected and k-edge-connected graphs, respectively. Wenger proved sat(n, F-k) = (k - 1)n - ((k)(2)); we prove sat(n, F-k') = (k - 1)(n - 1) -left perpendicular n/k+1 right perpendicular ((2) (k-1)). We also prove ex(n, F-k') = (k - 1)n - ((k)(2)) and characterize when equality holds. Finally, we give a lower bound on the spectral radius for F-k-saturated and F-k'-saturated graphs. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:278 / 283
页数:6
相关论文
共 11 条
[1]  
[Anonymous], 2011, ELECT J COMBIN
[2]  
Brouwer AE, 2012, UNIVERSITEXT, P1, DOI 10.1007/978-1-4614-1939-6
[3]   Eigenvalues and edge-connectivity of regular graphs [J].
Cioaba, Sebastian M. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (01) :458-470
[4]   A PROBLEM IN GRAPH THEORY [J].
ERDOS, P ;
HAJNAL, A ;
MOON, JW .
AMERICAN MATHEMATICAL MONTHLY, 1964, 71 (10) :1107-&
[5]  
FIEDLER M, 1973, CZECH MATH J, V23, P298
[6]  
Godsil C., 2013, ALGEBRAIC GRAPH THEO
[7]  
Hyun J., TIGHT SPECTRAL UNPUB
[8]   On graphs with equal algebraic and vertex connectivity [J].
Kirkland, SJ ;
Molitierno, JJ ;
Neumann, M ;
Shader, BL .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 341 (1-3) :45-56
[9]   Edge-connectivity in regular multigraphs from eigenvalues [J].
Suil, O. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 491 :4-14
[10]  
Turan P., 1941, Mat. Fiz. Lapok, V48, P436