Linearization is a widely used method for solving polynomial eigenproblems in which a matrix polynomial is transformed to a matrix pencil of larger size. Fiedler pencils, generalized Fiedler pencils, Fiedler pencils with repetition (FPRs) and generalized Fiedler pencils with repetition (GFPRs) are well known classes of strong linearizations of matrix polynomials. The class GFPRs is also a rich source of structure-preserving strong linearizations of structured matrix polynomials. The recovery of eigenvectors, minimal bases and minimal indices of matrix polynomials from those of the linearizations is an important task. It is well known that eigenvectors and minimal bases of matrix polynomials can be easily recovered from those of the Fiedler and generalized Fiedler pencils. By contrast, barring a small subclass of FPRs, the recovery of eigenvectors and minimal bases of matrix polynomials from those of the FPRs and GFPRs is still an open problem. The purpose of this paper is to fill this gap. We consider the class of GFPRs, which subsumes the class of FPRs, and describe the recovery of eigenvectors, minimal bases and minimal indices of matrix polynomials from those of the GFPRs and show that the recovery is operation-free. (C) 2019 Elsevier Inc. All rights reserved.
机构:
Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USAUniv Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
Bueno, Maria I.
de Teran, Fernando
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
Univ Carlos III Madrid, Dept Matemat, Leganes 28911, SpainUniv Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
de Teran, Fernando
Dopico, Froilan M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Carlos III Madrid, Dept Matemat, Leganes 28911, Spain
Univ Carlos III Madrid, Inst Ciencias Matemat CSIC UAM UC3M UCM, Leganes 28911, SpainUniv Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
机构:
Aalto Univ, Dept Math & Syst Anal, POB 11100, FI-00076 Aalto, FinlandAalto Univ, Dept Math & Syst Anal, POB 11100, FI-00076 Aalto, Finland
Noferini, Vanni
Van Dooren, Paul
论文数: 0引用数: 0
h-index: 0
机构:
Catholic Univ Louvain, Dept Math Engn, Av Lemaitre 4, B-1348 Louvain La Neuve, BelgiumAalto Univ, Dept Math & Syst Anal, POB 11100, FI-00076 Aalto, Finland
机构:
Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
Univ Calif Santa Barbara, Coll Creat Studies, Santa Barbara, CA 93106 USAUniv Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
Bueno, M. I.
Dopico, F. M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Carlos III Madrid, Dept Matemat, Avda Univ 30, Leganes 28911, SpainUniv Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
Dopico, F. M.
Perez, J.
论文数: 0引用数: 0
h-index: 0
机构:
Katholieke Univ Leuven, Dept Comp Sci, Celestijnenlaan 200A, B-3001 Heverlee, BelgiumUniv Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
Perez, J.
Saavedra, R.
论文数: 0引用数: 0
h-index: 0
机构:
Dos Pueblos High Sch, Goleta, CA 93117 USAUniv Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
Saavedra, R.
Zykoski, B.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Virginia, Dept Math, Charlottesville, VA 22903 USAUniv Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA