Fuzzy adaptive Q-learning method with dynamic learning parameters

被引:0
作者
Maeda, Y [1 ]
机构
[1] Osaka Electrocommun Univ, Fac Informat Sci & Technol, Neyagawa, Osaka 5728530, Japan
来源
JOINT 9TH IFSA WORLD CONGRESS AND 20TH NAFIPS INTERNATIONAL CONFERENCE, PROCEEDINGS, VOLS. 1-5 | 2001年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
An active search in the reinforcement learning disturbs the learning process when learning proceeds and converges to a partial search area. Therefore, it is important to balance between searching behavior of the unknown knowledge and using behavior of the obtained knowledge. In this research, we propose an adaptive Q-learning method tuning learning parameters of the reinforcement learning by fuzzy rules. We also report some results of artificial ants simulation using this method.
引用
收藏
页码:2778 / 2780
页数:3
相关论文
共 6 条
  • [1] MCCALLUM RA, 1992, P 9 INT C MACH LEARN, P316
  • [2] PENG J, 1995, P 12 INT C MACH LEAR, P438
  • [3] SINGH SP, 1992, MACH LEARN, V8, P323, DOI 10.1007/BF00992700
  • [4] Sutton R.S., 1990, P 7 INT C MACHINE LE, P216
  • [5] SUTTON RS, 1994, MACH LEARN, V3, P9
  • [6] WATKINS CJCH, 1992, MACH LEARN, V8, P279, DOI 10.1007/BF00992698